Skip to main content

Advertisement

Log in

Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells (hPSC) self-renew and represent a potentially unlimited source for the production of cardiomyocytes (CMs) suitable for studies of human cardiac development, drug discovery, cardiotoxicity testing, and disease modelling and for cell-based therapies. However, most cardiac differentiation protocols yield mixed cultures of atrial-, ventricular-, and pacemaker-like cells at various stages of development, as well as non-CMs. The proportions and maturation states of these cell types result from disparities among differentiation protocols and time of cultivation, as well as hPSC reprogramming inconsistencies and genetic background variations. The reproducible use of hPSC-CMs for research and therapy is therefore limited by issues of cell population heterogeneity and functional states of maturation. A validated method that overcomes issues of cell heterogeneity is immunophenotyping coupled with live cell sorting, an approach that relies on accessible surface markers restricted to the desired cell type(s). Here we review current progress in unravelling heterogeneity in hPSC-cardiac cultures and in the identification of surface markers suitable for defining cardiac identity, subtype specificity, and maturation states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed RE, Anzai T, Chanthra N, Uosaki H (2020) A brief review of current maturation methods for human induced pluripotent stem cells-derived cardiomyocytes. Front Cell Dev Biol 8:178. https://doi.org/10.3389/fcell.2020.00178

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ban K, Bae S, Yoon YS (2017) Current strategies and challenges for purification of cardiomyocytes derived from human pluripotent stem cells. Theranostics 7:2067–2077. https://doi.org/10.7150/thno.19427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ban K, Wile B, Cho KW, Kim S, Song MK, Kim SY, Singer J, Syed A, Yu SP, Wagner M, Bao G, Yoon YS (2015) Non-genetic purification of ventricular cardiomyocytes from differentiating embryonic stem cells through molecular beacons targeting IRX-4. Stem cell reports 5:1239–1249. https://doi.org/10.1016/j.stemcr.2015.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ban K, Wile B, Kim S, Park HJ, Byun J, Cho KW, Saafir T, Song MK, Yu SP, Wagner M, Bao G, Yoon YS (2013) Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 128:1897–1909. https://doi.org/10.1161/CIRCULATIONAHA.113.004228

    Article  CAS  PubMed  Google Scholar 

  5. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Hartlova A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B (2015) A mass spectrometric-derived cell surface protein atlas. PLoS ONE 10:e0121314. https://doi.org/10.1371/journal.pone.0121314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310. https://doi.org/10.1634/stemcells.2008-0183

    Article  PubMed  Google Scholar 

  7. Ben-David U, Benvenisty N (2014) Chemical ablation of tumor-initiating human pluripotent stem cells. Nat Protoc 9:729–740. https://doi.org/10.1038/nprot.2014.050

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok WM, Wu JC, Boheler KR, Gundry RL (2014) High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J V Exp 91:52010. https://doi.org/10.3791/52010

    Article  CAS  Google Scholar 

  9. Biendarra-Tiegs SM, Secreto FJ, Nelson TJ (2020) Addressing variability and heterogeneity of induced pluripotent stem cell-derived cardiomyocytes. Adv Exp Med Biol 1212:1–29. https://doi.org/10.1007/5584_2019_350

    Article  CAS  PubMed  Google Scholar 

  10. Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V, Dambrot C, Devalla HD, Davis RP, Mastroberardino PG, Atsma DE, Passier R, Mummery CL (2015) Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep 13:733–745. https://doi.org/10.1016/j.celrep.2015.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boheler KR, Bhattacharya S, Kropp EM, Chuppa S, Riordon DR, Bausch-Fluck D, Burridge PW, Wu JC, Wersto RP, Chan GC, Rao S, Wollscheid B, Gundry RL (2014) A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem cell reports 3:185–203. https://doi.org/10.1016/j.stemcr.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boheler KR, Gundry RL (2017) Concise review: cell surface N-linked glycoproteins as potential stem cell markers and drug targets. Stem Cells Transl Med 6:131–138. https://doi.org/10.5966/sctm.2016-0109

    Article  PubMed  Google Scholar 

  13. Burnett SD, Blanchette AD, Grimm FA, House JS, Reif DM, Wright FA, Chiu WA, Rusyn I (2019) Population-based toxicity screening in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 381:114711. https://doi.org/10.1016/j.taap.2019.114711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burridge PW, Holmstrom A, Wu JC (2015) Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet 87(21):21.3.1-21.3.15. https://doi.org/10.1002/0471142905.hg2103s87

    Article  Google Scholar 

  15. Carcamo-Orive I, Hoffman GE, Cundiff P, Beckmann ND, D’Souza SL, Knowles JW, Patel A, Papatsenko D, Abbasi F, Reaven GM, Whalen S, Lee P, Shahbazi M, Henrion MYR, Zhu K, Wang S, Roussos P, Schadt EE, Pandey G, Chang R, Quertermous T, Lemischka I (2017) Analysis of transcriptional variability in a large human iPSC library reveals genetic and non-genetic determinants of heterogeneity. Cell Stem Cell 20(518–532):e519. https://doi.org/10.1016/j.stem.2016.11.005

    Article  CAS  Google Scholar 

  16. Cavero I, Holzgrefe H (2014) Comprehensive in vitro Proarrhythmia Assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative. Expert Opin Drug Saf 13:745–758. https://doi.org/10.1517/14740338.2014.915311

    Article  CAS  PubMed  Google Scholar 

  17. Celik S, Karbalaei-Sadegh M, Radegran G, Smith JG, Gidlof O (2019) Functional screening identifies microRNA regulators of corin activity and atrial natriuretic peptide biogenesis. Mol Cell Biol 39:e00271-19. https://doi.org/10.1128/MCB.00271-19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chan JC, Knudson O, Wu F, Morser J, Dole WP, Wu Q (2005) Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc Natl Acad Sci U S A 102:785–790. https://doi.org/10.1073/pnas.0407234102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen S, Sen S, Young D, Wang W, Moravec CS, Wu Q (2010) Protease corin expression and activity in failing hearts. Am J Physiol Heart Circ Physiol 299:H1687-1692. https://doi.org/10.1152/ajpheart.00399.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277. https://doi.org/10.1038/nature13233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Churko JM, Garg P, Treutlein B, Venkatasubramanian M, Wu H, Lee J, Wessells QN, Chen SY, Chen WY, Chetal K, Mantalas G, Neff N, Jabart E, Sharma A, Nolan GP, Salomonis N, Wu JC (2018) Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 9:4906. https://doi.org/10.1038/s41467-018-07333-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA (2000) Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 275:32523–32529. https://doi.org/10.1074/jbc.M003826200

    Article  CAS  PubMed  Google Scholar 

  23. Cyganek L, Tiburcy M, Sekeres K, Gerstenberg K, Bohnenberger H, Lenz C, Henze S, Stauske M, Salinas G, Zimmermann WH, Hasenfuss G, Guan K (2018) Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes. JCI Insight 3:e99941. https://doi.org/10.1172/jci.insight.99941

    Article  PubMed Central  Google Scholar 

  24. Denning C, Borgdorff V, Crutchley J, Firth KS, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JG, Young LE (2016) Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta 1863:1728–1748. https://doi.org/10.1016/j.bbamcr.2015.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C, Gkatzis K, Elliott DA, de Sousa C, Lopes SM, Mummery CL, Verkerk AO, Passier R (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410. https://doi.org/10.15252/emmm.201404757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doliana R, Bot S, Mungiguerra G, Canton A, Cilli SP, Colombatti A (2001) Isolation and characterization of EMILIN-2, a new component of the growing EMILINs family and a member of the EMI domain-containing superfamily. J Biol Chem 276:12003–12011. https://doi.org/10.1074/jbc.M011591200

    Article  CAS  PubMed  Google Scholar 

  27. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29:1011–1018. https://doi.org/10.1038/nbt.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duncan JG, Bharadwaj KG, Fong JL, Mitra R, Sambandam N, Courtois MR, Lavine KJ, Goldberg IJ, Kelly DP (2010) Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation 121:426–435. https://doi.org/10.1161/CIRCULATIONAHA.109.888735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL, Biben C, Hatzistavrou T, Hirst CE, Yu QC, Skelton RJ, Ward-van Oostwaard D, Lim SM, Khammy O, Li X, Hawes SM, Davis RP, Goulburn AL, Passier R, Prall OW, Haynes JM, Pouton CW, Kaye DM, Mummery CL, Elefanty AG, Stanley EG (2011) NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods 8:1037–1040. https://doi.org/10.1038/nmeth.1740

    Article  CAS  PubMed  Google Scholar 

  30. Fazeli A, Liew CG, Matin MM, Elliott S, Jeanmeure LF, Wright PC, Moore H, Andrews PW (2011) Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. Int J Dev Biol 55:175–180. https://doi.org/10.1387/ijdb.103177af

    Article  CAS  PubMed  Google Scholar 

  31. Febbraio M, Silverstein RL (2007) CD36: implications in cardiovascular disease. Int J Biochem Cell Biol 39:2012–2030. https://doi.org/10.1016/j.biocel.2007.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J, Levy S, Suo S, Han JJ, Osteil P, Peng G, Jing N, Baillie GJ, Senabouth A, Christ AN, Bruxner TJ, Murry CE, Wong ES, Ding J, Wang Y, Hudson J, Ruohola-Baker H, Bar-Joseph Z, Tam PPL, Powell JE, Palpant NJ (2018) Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell 23:586-598 e8. https://doi.org/10.1016/j.stem.2018.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M, Drzymalski M, Wagner S, Maier LS, Hehr U, Baessler A, Fischer M, Hengstenberg C (2015) Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS ONE 10:e0126596. https://doi.org/10.1371/journal.pone.0126596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417. https://doi.org/10.1152/physrev.00003.2009

    Article  CAS  PubMed  Google Scholar 

  35. Glatz JFC, Luiken J (2018) Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res 59:1084–1093. https://doi.org/10.1194/jlr.R082933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gundry RL, Boheler KR, Van Eyk JE, Wollscheid B (2008) A novel role for proteomics in the discovery of cell-surface markers on stem cells: scratching the surface. Proteomics Clin Appl 2:892–903. https://doi.org/10.1002/prca.200780122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gundry RL, Burridge PW, Boheler KR (2011) Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics 11:3947–3961. https://doi.org/10.1002/pmic.201100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gundry RL, Riordon DR, Tarasova Y, Chuppa S, Bhattacharya S, Juhasz O, Wiedemeier O, Milanovich S, Noto FK, Tchernyshyov I, Raginski K, Bausch-Fluck D, Tae HJ, Marshall S, Duncan SA, Wollscheid B, Wersto RP, Rao S, Van Eyk JE, Boheler KR (2012) A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Molecular & cellular proteomics : MCP 11:303–316. https://doi.org/10.1074/mcp.M112.018135

    Article  CAS  PubMed Central  Google Scholar 

  39. Hamad S, Derichsweiler D, Papadopoulos S, Nguemo F, Saric T, Sachinidis A, Brockmeier K, Hescheler J, Boukens BJ, Pfannkuche K (2019) Generation of human induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer and scalable 3D suspension bioreactor cultures with reduced batch-to-batch variations. Theranostics 9:7222–7238. https://doi.org/10.7150/thno.32058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS, Yuasa S, Li W, Yamakawa H, Tanaka T, Onitsuka T, Shimoji K, Ohno Y, Egashira T, Kaneda R, Murata M, Hidaka K, Morisaki T, Sasaki E, Suzuki T, Sano M, Makino S, Oikawa S, Fukuda K (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61–66. https://doi.org/10.1038/nmeth.1403

    Article  CAS  PubMed  Google Scholar 

  41. Heyduk T, Heyduk E (2002) Molecular beacons for detecting DNA binding proteins. Nat Biotechnol 20:171–176. https://doi.org/10.1038/nbt0202-171

    Article  CAS  PubMed  Google Scholar 

  42. Hirata H, Murakami Y, Miyamoto Y, Tosaka M, Inoue K, Nagahashi A, Jakt LM, Asahara T, Iwata H, Sawa Y, Kawamata S (2006) ALCAM (CD166) is a surface marker for early murine cardiomyocytes. Cells Tissues Organs 184:172–180. https://doi.org/10.1159/000099624

    Article  CAS  PubMed  Google Scholar 

  43. Inagaki K, Yamao T, Noguchi T, Matozaki T, Fukunaga K, Takada T, Hosooka T, Akira S, Kasuga M (2000) SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J 19:6721–6731. https://doi.org/10.1093/emboj/19.24.6721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ito E, Miyagawa S, Takeda M, Kawamura A, Harada A, Iseoka H, Yajima S, Sougawa N, Mochizuki-Oda N, Yasuda S, Sato Y, Sawa Y (2019) Tumorigenicity assay essential for facilitating safety studies of hiPSC-derived cardiomyocytes for clinical application. Sci Rep 9:1881. https://doi.org/10.1038/s41598-018-38325-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jeziorowska D, Fontaine V, Jouve C, Villard E, Dussaud S, Akbar D, Letang V, Cervello P, Itier JM, Pruniaux MP, Hulot JS (2017) Differential sarcomere and electrophysiological maturation of human iPSC-derived cardiac myocytes in monolayer vs aggregation-based differentiation protocols. Int J Mol Sci 18:1173. https://doi.org/10.3390/ijms18061173

    Article  CAS  PubMed Central  Google Scholar 

  46. Jha R, Wile B, Wu Q, Morris AH, Maher KO, Wagner MB, Bao G, Xu C (2015) Molecular beacon-based detection and isolation of working-type cardiomyocytes derived from human pluripotent stem cells. Biomaterials 50:176–185. https://doi.org/10.1016/j.biomaterials.2015.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang DS, Zhang XF, Gao L, Zong J, Zhou H, Liu Y, Zhang Y, Bian ZY, Zhu LH, Fan GC, Zhang XD, Li H (2014) Signal regulatory protein-alpha protects against cardiac hypertrophy via the disruption of toll-like receptor 4 signaling. Hypertension 63:96–104. https://doi.org/10.1161/HYPERTENSIONAHA.113.01506

    Article  CAS  PubMed  Google Scholar 

  48. Josowitz R, Lu J, Falce C, D’Souza SL, Wu M, Cohen N, Dubois NC, Zhao Y, Sobie EA, Fishman GI, Gelb BD (2014) Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression. PLoS ONE 9:e101316. https://doi.org/10.1371/journal.pone.0101316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanchan K, Iyer K, Yanek LR, Carcamo-Orive I, Taub MA, Malley C, Baldwin K, Becker LC, Broeckel U, Cheng L, Cowan C, D’Antonio M, Frazer KA, Quertermous T, Mostoslavsky G, Murphy G, Rabinovitch M, Rader DJ, Steinberg MH, Topol E, Yang W, Knowles JW, Jaquish CE, Ruczinski I, Mathias RA (2020) Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Res 46:101803. https://doi.org/10.1016/j.scr.2020.101803

    Article  CAS  PubMed  Google Scholar 

  50. Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17:341–359. https://doi.org/10.1038/s41569-019-0331-x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim TT, Dyck JR (2016) The role of CD36 in the regulation of myocardial lipid metabolism. Biochim Biophys Acta 1860:1450–1460. https://doi.org/10.1016/j.bbalip.2016.03.018

    Article  CAS  Google Scholar 

  52. Kropp EM, Bhattacharya S, Waas M, Chuppa SL, Hadjantonakis AK, Boheler KR, Gundry RL (2014) N-glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics Clin Appl 8:603–609. https://doi.org/10.1002/prca.201400021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kropp EM, Oleson BJ, Broniowska KA, Bhattacharya S, Chadwick AC, Diers AR, Hu Q, Sahoo D, Hogg N, Boheler KR, Corbett JA, Gundry RL (2015) Inhibition of an NAD(+) salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Transl Med 4:483–493. https://doi.org/10.5966/sctm.2014-0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503

    Article  CAS  Google Scholar 

  55. Kwee L, Burns DK, Rumberger JM, Norton C, Wolitzky B, Terry R, Lombard-Gillooly KM, Shuster DJ, Kontgen F, Stewart C, et al. (1995) Creation and characterization of E-selectin- and VCAM-1-deficient mice. Ciba Found Symp 189:17–28; discussion 28–34, 77–18. doi:https://doi.org/10.1002/9780470514719.ch3

  56. Laco F, Lam AT, Woo TL, Tong G, Ho V, Soong PL, Grishina E, Lin KH, Reuveny S, Oh SK (2020) Selection of human induced pluripotent stem cells lines optimization of cardiomyocytes differentiation in an integrated suspension microcarrier bioreactor. Stem Cell Res Ther 11:118. https://doi.org/10.1186/s13287-020-01618-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laco F, Woo TL, Zhong Q, Szmyd R, Ting S, Khan FJ, Chai CLL, Reuveny S, Chen A, Oh S (2018) Unraveling the inconsistencies of cardiac differentiation efficiency induced by the GSK3beta inhibitor CHIR99021 in human pluripotent stem cells. Stem cell reports 10:1851–1866. https://doi.org/10.1016/j.stemcr.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848-1857. https://doi.org/10.1073/pnas.1200250109

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lieu DK, Liu J, Siu CW, McNerney GP, Tse HF, Abu-Khalil A, Huser T, Li RA (2009) Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev 18:1493–1500. https://doi.org/10.1089/scd.2009.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu J, Fu JD, Siu CW, Li RA (2007) Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells 25:3038–3044. https://doi.org/10.1634/stemcells.2007-0549

    Article  CAS  PubMed  Google Scholar 

  61. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, Couture L, Vogel KW, Astley CA, Baldessari A, Ogle J, Don CW, Steinberg ZL, Seslar SP, Tuck SA, Tsuchida H, Naumova AV, Dupras SK, Lyu MS, Lee J, Hailey DW, Reinecke H, Pabon L, Fryer BH, MacLellan WR, Thies RS, Murry CE (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36:597–605. https://doi.org/10.1038/nbt.4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maitra N, Flink IL, Bahl JJ, Morkin E (2000) Expression of alpha and beta integrins during terminal differentiation of cardiomyocytes. Cardiovasc Res 47:715–725

    Article  CAS  Google Scholar 

  63. Mangeney M, Richard Y, Coulaud D, Tursz T, Wiels J (1991) CD77: an antigen of germinal center B cells entering apoptosis. Eur J Immunol 21:1131–1140. https://doi.org/10.1002/eji.1830210507

    Article  CAS  PubMed  Google Scholar 

  64. Miki K, Endo K, Takahashi S, Funakoshi S, Takei I, Katayama S, Toyoda T, Kotaka M, Takaki T, Umeda M, Okubo C, Nishikawa M, Oishi A, Narita M, Miyashita I, Asano K, Hayashi K, Osafune K, Yamanaka S, Saito H, Yoshida Y (2015) Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16:699–711. https://doi.org/10.1016/j.stem.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  65. Miyagawa S, Sawa Y (2018) Building a new strategy for treating heart failure using induced pluripotent stem cells. J Cardiol 72:445–448. https://doi.org/10.1016/j.jjcc.2018.05.002

    Article  PubMed  Google Scholar 

  66. Moore JC, Fu J, Chan YC, Lin D, Tran H, Tse HF, Li RA (2008) Distinct cardiogenic preferences of two human embryonic stem cell (hESC) lines are imprinted in their proteomes in the pluripotent state. Biochem Biophys Res Commun 372:553–558. https://doi.org/10.1016/j.bbrc.2008.05.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409. https://doi.org/10.1056/NEJMoa0908679

    Article  CAS  PubMed  Google Scholar 

  68. Moyes KW, Sip CG, Obenza W, Yang E, Horst C, Welikson RE, Hauschka SD, Folch A, Laflamme MA (2013) Human embryonic stem cell-derived cardiomyocytes migrate in response to gradients of fibronectin and Wnt5a. Stem Cells Dev 22:2315–2325. https://doi.org/10.1089/scd.2012.0586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mummery CL (2018) Perspectives on the use of human induced pluripotent stem cell-derived cardiomyocytes in biomedical research. Stem cell reports 11:1306–1311. https://doi.org/10.1016/j.stemcr.2018.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC, Council AHA, on Functional G, Translational B, Council on Cardiovascular Disease in the Y, Council on C, Stroke N, (2018) Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circ Genom Precis Med 11:e000043. https://doi.org/10.1161/HCG.0000000000000043

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nakatani K, Masuda D, Kobayashi T, Sairyo M, Zhu Y, Okada T, Naito AT, Ohama T, Koseki M, Oka T, Akazawa H, Nishida M, Komuro I, Sakata Y, Yamashita S (2019) Pressure overload impairs cardiac function in long-chain fatty acid transporter CD36-knockout mice. Int Heart J 60:159–167. https://doi.org/10.1536/ihj.18-114

    Article  CAS  PubMed  Google Scholar 

  72. Neiman G, Scarafia MA, La Greca A, Santin Velazque NL, Garate X, Waisman A, Mobbs AM, Kasai-Brunswick TH, Mesquita F, Martire-Greco D, Moro LN, Luzzani C, Bastos Carvalho A, Sevlever GE, Campos de Carvalho A, Guberman AS, Miriuka SG (2019) Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. Sci Rep 9:18077. https://doi.org/10.1038/s41598-019-54352-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nudelman E, Kannagi R, Hakomori S, Parsons M, Lipinski M, Wiels J, Fellous M, Tursz T (1983) A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science 220:509–511. https://doi.org/10.1126/science.6836295

    Article  CAS  PubMed  Google Scholar 

  74. Paik DT, Chandy M, Wu JC (2020) Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev 72:320–342. https://doi.org/10.1124/pr.116.013003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pekkanen-Mattila M, Chapman H, Kerkela E, Suuronen R, Skottman H, Koivisto AP, Aalto-Setala K (2010) Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of cardiac cells with fairly mature electrical phenotype. Exp Biol Med (Maywood) 235:522–530. https://doi.org/10.1258/ebm.2010.009345

    Article  CAS  Google Scholar 

  76. Pietka TA, Sulkin MS, Kuda O, Wang W, Zhou D, Yamada KA, Yang K, Su X, Gross RW, Nerbonne JM, Efimov IR, Abumrad NA (2012) CD36 protein influences myocardial Ca2+ homeostasis and phospholipid metabolism: conduction anomalies in CD36-deficient mice during fasting. J Biol Chem 287:38901–38912. https://doi.org/10.1074/jbc.M112.413609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ponten A, Walsh S, Malan D, Xian X, Scheele S, Tarnawski L, Fleischmann BK, Jovinge S (2013) FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression. PLoS ONE 8:e82403. https://doi.org/10.1371/journal.pone.0082403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Poon E, Keung W, Liang Y, Ramalingam R, Yan B, Zhang S, Chopra A, Moore J, Herren A, Lieu DK, Wong HS, Weng Z, Wong OT, Lam YW, Tomaselli GF, Chen C, Boheler KR, Li RA (2015) Proteomic analysis of human pluripotent stem cell-derived, fetal, and adult ventricular cardiomyocytes reveals pathways crucial for cardiac metabolism and maturation. Circ Cardiovasc Genet 8:427–436. https://doi.org/10.1161/CIRCGENETICS.114.000918

    Article  CAS  PubMed  Google Scholar 

  79. Poon E, Kong CW, Li RA (2011) Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective. Mol Pharm 8:1495–1504. https://doi.org/10.1021/mp2002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Poon E, Yan B, Zhang S, Rushing S, Keung W, Ren L, Lieu DK, Geng L, Kong CW, Wang J, Wong HS, Boheler KR, Li RA (2013) Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. PLoS ONE 8:e77784. https://doi.org/10.1371/journal.pone.0077784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Poon EN, Hao B, Guan D, Jun Li M, Lu J, Yang Y, Wu B, Wu SC, Webb SE, Liang Y, Miller AL, Yao X, Wang J, Yan B, Boheler KR (2018) Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovasc Res 114:894–906. https://doi.org/10.1093/cvr/cvy019

    Article  CAS  PubMed  Google Scholar 

  82. Poon EN, Luo XL, Webb SE, Yan B, Zhao R, Wu SCM, Yang Y, Zhang P, Bai H, Shao J, Chan CM, Chan GC, Tsang SY, Gundry RL, Yang HT, Boheler KR (2020) The cell surface marker CD36 selectively identifies matured, mitochondria-rich hPSC-cardiomyocytes. Cell Res 30:626–629. https://doi.org/10.1038/s41422-020-0292-y

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rust W, Balakrishnan T, Zweigerdt R (2009) Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. Regen Med 4:225–237. https://doi.org/10.2217/17460751.4.2.225

    Article  CAS  PubMed  Google Scholar 

  84. Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, Beyar R, Balke CW, Schiller J, Gepstein L (2008) Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 26:1961–1972. https://doi.org/10.1634/stemcells.2007-0591

    Article  CAS  PubMed  Google Scholar 

  85. Schweizer PA, Darche FF, Ullrich ND, Geschwill P, Greber B, Rivinius R, Seyler C, Muller-Decker K, Draguhn A, Utikal J, Koenen M, Katus HA, Thomas D (2017) Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Res Ther 8:229. https://doi.org/10.1186/s13287-017-0681-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Skelton RJ, Costa M, Anderson DJ, Bruveris F, Finnin BW, Koutsis K, Arasaratnam D, White AJ, Rafii A, Ng ES, Elefanty AG, Stanley EG, Pouton CW, Haynes JM, Ardehali R, Davis RP, Mummery CL, Elliott DA (2014) SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Res 13:172–179. https://doi.org/10.1016/j.scr.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  87. Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285:H2355-2363

    Article  CAS  Google Scholar 

  88. Sung TC, Su HC, Ling QD, Kumar SS, Chang Y, Hsu ST, Higuchi A (2020) Efficient differentiation of human pluripotent stem cells into cardiomyocytes on cell sorting thermoresponsive surface. Biomaterials 253:120060. https://doi.org/10.1016/j.biomaterials.2020.120060

    Article  CAS  PubMed  Google Scholar 

  89. Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD (2011) Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29:313–314. https://doi.org/10.1038/nbt.1835

    Article  CAS  PubMed  Google Scholar 

  90. Tarnawski L, Xian X, Monnerat G, Macaulay IC, Malan D, Borgman A, Wu SM, Fleischmann BK, Jovinge S (2015) Integrin based isolation enables purification of murine lineage committed cardiomyocytes. PLoS ONE 10:e0135880. https://doi.org/10.1371/journal.pone.0135880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, Hashimoto H, Suzuki T, Yamashita H, Satoh Y, Egashira T, Seki T, Muraoka N, Yamakawa H, Ohgino Y, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Fukuda K (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. https://doi.org/10.1016/j.stem.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  92. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS ONE 6:e23657. https://doi.org/10.1371/journal.pone.0023657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Laake LW, van Donselaar EG, Monshouwer-Kloots J, Schreurs C, Passier R, Humbel BM, Doevendans PA, Sonnenberg A, Verkleij AJ, Mummery CL (2010) Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes. Cell Mol Life Sci 67:277–290. https://doi.org/10.1007/s00018-009-0179-z

    Article  CAS  PubMed  Google Scholar 

  94. Veevers J, Farah EN, Corselli M, Witty AD, Palomares K, Vidal JG, Emre N, Carson CT, Ouyang K, Liu C, van Vliet P, Zhu M, Hegarty JM, Deacon DC, Grinstein JD, Dirschinger RJ, Frazer KA, Adler ED, Knowlton KU, Chi NC, Martin JC, Chen J, Evans SM (2018) Cell-surface marker signature for enrichment of ventricular cardiomyocytes derived from human embryonic stem cells. Stem cell reports 11:828–841. https://doi.org/10.1016/j.stemcr.2018.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Volpato V, Smith J, Sandor C, Ried JS, Baud A, Handel A, Newey SE, Wessely F, Attar M, Whiteley E, Chintawar S, Verheyen A, Barta T, Lako M, Armstrong L, Muschet C, Artati A, Cusulin C, Christensen K, Patsch C, Sharma E, Nicod J, Brownjohn P, Stubbs V, Heywood WE, Gissen P, De Filippis R, Janssen K, Reinhardt P, Adamski J, Royaux I, Peeters PJ, Terstappen GC, Graf M, Livesey FJ, Akerman CJ, Mills K, Bowden R, Nicholson G, Webber C, Cader MZ, Lakics V (2018) Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: a multi-site omics study. Stem cell reports 11:897–911. https://doi.org/10.1016/j.stemcr.2018.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B, Starbatty J, Yorgan T, Cheng KH, Lessmann K, Stolen T, Scherrer-Crosbie M, Smith G, Reichenspurner H, Hansen A, Eschenhagen T (2016) Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 8:363ra148. https://doi.org/10.1126/scitranslmed.aaf8781

    Article  CAS  PubMed  Google Scholar 

  97. Wiencierz AM, Kernbach M, Ecklebe J, Monnerat G, Tomiuk S, Raulf A, Christalla P, Malan D, Hesse M, Bosio A, Fleischmann BK, Eckardt D (2015) Differential expression levels of integrin alpha6 enable the selective identification and isolation of atrial and ventricular cardiomyocytes. PLoS ONE 10:e0143538. https://doi.org/10.1371/journal.pone.0143538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Williams B, Lobel W, Finklea F, Halloin C, Ritzenhoff K, Manstein F, Mohammadi S, Hashemi M, Zweigerdt R, Lipke E, Cremaschi S (2020) Prediction of human induced pluripotent stem cell cardiac differentiation outcome by multifactorial process modeling. Front Bioeng Biotechnol 8:851. https://doi.org/10.3389/fbioe.2020.00851

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386. https://doi.org/10.1038/nbt.1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wyles SP, Li X, Hrstka SC, Reyes S, Oommen S, Beraldi R, Edwards J, Terzic A, Olson TM, Nelson TJ (2016) Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells. Hum Mol Genet 25:254–265. https://doi.org/10.1093/hmg/ddv468

    Article  CAS  PubMed  Google Scholar 

  101. Yan W, Sheng N, Seto M, Morser J, Wu Q (1999) Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem 274:14926–14935. https://doi.org/10.1074/jbc.274.21.14926

    Article  CAS  PubMed  Google Scholar 

  102. Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, Febbraio M, Finck BN, Kelly DP (2007) CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 100:1208–1217. https://doi.org/10.1161/01.RES.0000264104.25265.b6

    Article  CAS  PubMed  Google Scholar 

  103. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528. https://doi.org/10.1038/nature06894

    Article  CAS  PubMed  Google Scholar 

  104. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30-41. https://doi.org/10.1161/CIRCRESAHA.108.192237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang JZ, Termglinchan V, Shao NY, Itzhaki I, Liu C, Ma N, Tian L, Wang VY, Chang ACY, Guo H, Kitani T, Wu H, Lam CK, Kodo K, Sayed N, Blau HM, Wu JC (2019) A human iPSC double-reporter system enables purification of cardiac lineage subpopulations with distinct function and drug response profiles. Cell Stem Cell 24(802–811):e805. https://doi.org/10.1016/j.stem.2019.02.015

    Article  CAS  Google Scholar 

  106. Zhang Q, Jiang J, Han P, Yuan Q, Zhang J, Zhang X, Xu Y, Cao H, Meng Q, Chen L, Tian T, Wang X, Li P, Hescheler J, Ji G, Ma Y (2011) Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res 21:579–587. https://doi.org/10.1038/cr.2010.163

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by funding from the ‘Improvement on Competitiveness in Hiring New Faculties’ Funding Scheme and the Direct Grant from the Chinese University of Hong Kong to E.N.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Ngar-Yun Poon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published as part of the Special Issue on Recent Progress with hPSCs for Drug Discovery, Organoids, Disease Models, and Cardiac Repair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boheler, K.R., Poon, E.NY. Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Arch - Eur J Physiol 473, 1023–1039 (2021). https://doi.org/10.1007/s00424-021-02549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02549-8

Keywords

Navigation