Skip to main content

Advertisement

Log in

Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Heart diseases are prevalent worldwide and account for the highest mortality than any other illness. Although investment in drug discovery and development has increased, the amount of drug approvals has seen a progressive decline. Moreover, adverse side effects to the heart have become the most common reasons for preclinical project cessation, partly due to the lack of suitable humanized preclinical models. Human pluripotent stem cells (hPSCs) have emerged as a powerful non-animal platform to model heart disease, to screen for novel drugs, and to test drug cardiotoxicity in a high-throughput and cost-effective manner. Here, we review and discuss recent breakthroughs in the development of cardiovascular modeling and their current and future applications of hPSC-based drug discovery and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando H, Yoshinaga T, Yamamoto W, Asakura K, Uda T, Taniguchi T, Ojima A, Shinkyo R, Kikuchi K, Osada T, Hayashi S, Kasai C, Miyamoto N, Tashibu H, Yamazaki D, Sugiyama A, Kanda Y, Sawada K, Sekino Y (2017) A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 84:111–127. https://doi.org/10.1016/j.vascn.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  2. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, Gussak I, LeMarec H, Nademanee K, Perez Riera AR, Shimizu W, Schulze-Bahr E, Tan H, Wilde A (2005) Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111:659–670. https://doi.org/10.1161/01.Cir.0000152479.54298.51

    Article  PubMed  Google Scholar 

  3. Arrowsmith J, Miller P (2013) Trial watch: phase II and phase III attrition rates 2011-2012. Nat Rev Drug Discov 12:569. https://doi.org/10.1038/nrd4090

    Article  CAS  PubMed  Google Scholar 

  4. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS (2019) Heart Disease and Stroke Statistics-2019 Update: a report from the American Heart Association. Circulation 139:e56–e528. https://doi.org/10.1161/cir.0000000000000659

    Article  PubMed  Google Scholar 

  5. Bjerregaard P, Nallapaneni H, Gussak I (2010) Short QT interval in clinical practice. J Electrocardiol 43:390–395. https://doi.org/10.1016/j.jelectrocard.2010.06.004

    Article  PubMed  Google Scholar 

  6. Blinova K, Stohlman J, Vicente J, Chan D, Johannesen L, Hortigon-Vinagre MP, Zamora V, Smith G, Crumb WJ, Pang L, Lyn-Cook B, Ross J, Brock M, Chvatal S, Millard D, Galeotti L, Stockbridge N, Strauss DG (2017) Comprehensive translational assessment of human-induced pluripotent stem cell derived cardiomyocytes for evaluating drug-induced arrhythmias. Toxicol Sci: Off J Soc Toxicol 155:234–247. https://doi.org/10.1093/toxsci/kfw200

    Article  CAS  Google Scholar 

  7. Braunwald E (2017) Cardiomyopathies: an overview. Circ Res 121:711–721. https://doi.org/10.1161/CIRCRESAHA.117.311812

    Article  CAS  PubMed  Google Scholar 

  8. Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am College Cardiol 20:1391–1396. https://doi.org/10.1016/0735-1097(92)90253-j

    Article  CAS  Google Scholar 

  9. Buikema JW, Lee S, Goodyer WR, Maas RG, Chirikian O, Li G, Miao Y, Paige SL, Lee D, Wu H, Paik DT, Rhee S, Tian L, Galdos FX, Puluca N, Beyersdorf B, Hu J, Beck A, Venkamatran S, Swami S, Wijnker P, Schuldt M, Dorsch LM, van Mil A, Red-Horse K, Wu JY, Geisen C, Hesse M, Serpooshan V, Jovinge S, Fleischmann BK, Doevendans PA, van der Velden J, Garcia KC, Wu JC, Sluijter JPG, Wu SM (2020) Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27:50–63.e55. https://doi.org/10.1016/j.stem.2020.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmström A, Chang AC, Coronado MJ, Ebert AD, Knowles JW, Telli ML, Witteles RM, Blau HM, Bernstein D, Altman RB, Wu JC (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Med 22:547–556. https://doi.org/10.1038/nm.4087

    Article  CAS  PubMed  Google Scholar 

  11. Carvajal-Vergara X, Sevilla A, D'Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812. https://doi.org/10.1038/nature09005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang HM, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH (2017) Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. J Am College Cardiol 70:2536–2551. https://doi.org/10.1016/j.jacc.2017.09.1096

    Article  Google Scholar 

  13. Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge N (2016) The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - update on progress. J Pharmacol Toxicol Methods 81:15–20. https://doi.org/10.1016/j.vascn.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  14. da Rocha AM, Campbell K, Mironov S, Jiang J, Mundada L, Guerrero-Serna G, Jalife J, Herron TJ (2017) hiPSC-CM monolayer maturation state determines drug responsiveness in high throughput pro-arrhythmia screen. Sci Rep 7:13834. https://doi.org/10.1038/s41598-017-13590-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV (2000) Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 101:2271–2276. https://doi.org/10.1161/01.cir.101.19.2271

    Article  CAS  PubMed  Google Scholar 

  16. Di Pasquale E, Lodola F, Miragoli M, Denegri M, Avelino-Cruz JE, Buonocore M, Nakahama H, Portararo P, Bloise R, Napolitano C, Condorelli G, Priori SG (2013) CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis 4:e843. https://doi.org/10.1038/cddis.2013.369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Díez J, González A, López B, Querejeta R (2005) Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med 2:209–216. https://doi.org/10.1038/ncpcardio0158

    Article  CAS  PubMed  Google Scholar 

  18. Drawnel FM, Boccardo S, Prummer M, Delobel F, Graff A, Weber M, Gérard R, Badi L, Kam-Thong T, Bu L, Jiang X, Hoflack JC, Kiialainen A, Jeworutzki E, Aoyama N, Carlson C, Burcin M, Gromo G, Boehringer M, Stahlberg H, Hall BJ, Magnone MC, Kolaja K, Chien KR, Bailly J, Iacone R (2014) Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep 9:810–821. https://doi.org/10.1016/j.celrep.2014.09.055

    Article  CAS  PubMed  Google Scholar 

  19. Egashira T, Yuasa S, Suzuki T, Aizawa Y, Yamakawa H, Matsuhashi T, Ohno Y, Tohyama S, Okata S, Seki T, Kuroda Y, Yae K, Hashimoto H, Tanaka T, Hattori F, Sato T, Miyoshi S, Takatsuki S, Murata M, Kurokawa J, Furukawa T, Makita N, Aiba T, Shimizu W, Horie M, Kamiya K, Kodama I, Ogawa S, Fukuda K (2012) Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res 95:419–429. https://doi.org/10.1093/cvr/cvs206

    Article  CAS  PubMed  Google Scholar 

  20. Elgendy IY, Mahtta D, Pepine CJ (2019) Medical therapy for heart failure caused by ischemic heart disease. Circ Res 124:1520–1535. https://doi.org/10.1161/circresaha.118.313568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fiedler LR, Chapman K, Xie M, Maifoshie E, Jenkins M, Golforoush PA, Bellahcene M, Noseda M, Faust D, Jarvis A, Newton G, Paiva MA, Harada M, Stuckey DJ, Song W, Habib J, Narasimhan P, Aqil R, Sanmugalingam D, Yan R, Pavanello L, Sano M, Wang SC, Sampson RD, Kanayaganam S, Taffet GE, Michael LH, Entman ML, Tan TH, Harding SE, Low CMR, Tralau-Stewart C, Perrior T, Schneider MD (2019) MAP4K4 inhibition promotes survival of human stem cell-derived cardiomyocytes and reduces infarct size in vivo. Cell Stem Cell 24:579–591.e512. https://doi.org/10.1016/j.stem.2019.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173. https://doi.org/10.1161/circresaha.111.243162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M (2003) Short QT syndrome: a familial cause of sudden death. Circulation 108:965–970. https://doi.org/10.1161/01.Cir.0000085071.28695.C4

    Article  PubMed  Google Scholar 

  24. Gallego-Delgado M, Delgado JF, Brossa-Loidi V, Palomo J, Marzoa-Rivas R, Perez-Villa F, Salazar-Mendiguchía J, Ruiz-Cano MJ, Gonzalez-Lopez E, Padron-Barthe L, Bornstein B, Alonso-Pulpon L, Garcia-Pavia P (2016) Idiopathic restrictive cardiomyopathy is primarily a genetic disease. J Am College Cardiol 67:3021–3023. https://doi.org/10.1016/j.jacc.2016.04.024

    Article  Google Scholar 

  25. Gao L, Kupfer ME, Jung JP, Yang L, Zhang P, Da Sie Y, Tran Q, Ajeti V, Freeman BT, Fast VG, Campagnola PJ, Ogle BM, Zhang J (2017) Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-Like, high-resolution, 3-dimensionally printed scaffold. Circ Res 120:1318–1325. https://doi.org/10.1161/circresaha.116.310277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193. https://doi.org/10.1016/s0065-3233(04)71005-0

    Article  CAS  PubMed  Google Scholar 

  27. Ghigo A, Li M, Hirsch E (2016) New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim Biophys Acta 1863:1916–1925. https://doi.org/10.1016/j.bbamcr.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  28. Goldfracht I, Efraim Y, Shinnawi R, Kovalev E, Huber I, Gepstein A, Arbel G, Shaheen N, Tiburcy M, Zimmermann WH, Machluf M, Gepstein L (2019) Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater 92:145–159. https://doi.org/10.1016/j.actbio.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  29. Gourdie RG, Dimmeler S, Kohl P (2016) Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov 15:620–638. https://doi.org/10.1038/nrd.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hahn VS, Lenihan DJ, Ky B (2014) Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc 3:e000665. https://doi.org/10.1161/jaha.113.000665

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heerspink HJ, Ninomiya T, Zoungas S, de Zeeuw D, Grobbee DE, Jardine MJ, Gallagher M, Roberts MA, Cass A, Neal B, Perkovic V (2009) Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: a systematic review and meta-analysis of randomised controlled trials. Lancet 373:1009–1015. https://doi.org/10.1016/s0140-6736(09)60212-9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG, Seidman CE (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366:619–628. https://doi.org/10.1056/NEJMoa1110186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hershberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10:531–547. https://doi.org/10.1038/nrcardio.2013.105

    Article  CAS  PubMed  Google Scholar 

  34. Hughes SE, McKenna WJ (2005) New insights into the pathology of inherited cardiomyopathy. Heart 91:257–264. https://doi.org/10.1136/hrt.2004.040337

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hwang HS, Kryshtal DO, Feaster TK, Sánchez-Freire V, Zhang J, Kamp TJ, Hong CC, Wu JC, Knollmann BC (2015) Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes to understand and test cardiac calcium handling: A glass half full. J Mol Cell Cardiol 89:379–380. https://doi.org/10.1016/j.yjmcc.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  36. Jennings RB, Ganote CE (1974) Structural changes in myocardium during acute ischemia. Circ Res 35(Suppl 3):156–172

    PubMed  Google Scholar 

  37. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S (2017) Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res 121:677–694. https://doi.org/10.1161/circresaha.117.308903

    Article  CAS  PubMed  Google Scholar 

  38. Kabaeva ZT, Perrot A, Wolter B, Dietz R, Cardim N, Correia JM, Schulte HD, Aldashev AA, Mirrakhimov MM, Osterziel KJ (2002) Systematic analysis of the regulatory and essential myosin light chain genes: genetic variants and mutations in hypertrophic cardiomyopathy. Eur J Hum Genet 10:741–748. https://doi.org/10.1038/sj.ejhg.5200872

    Article  CAS  PubMed  Google Scholar 

  39. Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117:80–88. https://doi.org/10.1161/circresaha.117.305365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaski JC, Crea F, Gersh BJ, Camici PG (2018) Reappraisal of ischemic heart disease. Circulation 138:1463–1480. https://doi.org/10.1161/circulationaha.118.031373

    Article  PubMed  Google Scholar 

  41. Kitani T, Ong SG, Lam CK, Rhee JW, Zhang JZ, Oikonomopoulos A, Ma N, Tian L, Lee J, Telli ML, Witteles RM, Sharma A, Sayed N, Wu JC (2019) Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast cancer. Circulation 139:2451–2465. https://doi.org/10.1161/circulationaha.118.037357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kline J, Costantini O (2019) Inherited cardiac arrhythmias and channelopathies. Med Clin North Am 103:809–820. https://doi.org/10.1016/j.mcna.2019.05.001

    Article  PubMed  Google Scholar 

  43. Kushwaha SS, Fallon JT, Fuster V (1997) Restrictive cardiomyopathy. N Engl J Med 336:267–276. https://doi.org/10.1056/nejm199701233360407

    Article  CAS  PubMed  Google Scholar 

  44. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, Levy-Nissenbaum E, Khoury A, Lorber A, Goldman B, Lancet D, Eldar M (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69:1378–1384. https://doi.org/10.1086/324565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee J, Termglinchan V, Diecke S, Itzhaki I, Lam CK, Garg P, Lau E, Greenhaw M, Seeger T, Wu H, Zhang JZ, Chen X, Gil IP, Ameen M, Sallam K, Rhee JW, Churko JM, Chaudhary R, Chour T, Wang PJ, Snyder MP, Chang HY, Karakikes I, Wu JC (2019) Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature 572:335–340. https://doi.org/10.1038/s41586-019-1406-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Minami I, Shiozaki M, Yu L, Yajima S, Miyagawa S, Shiba Y, Morone N, Fukushima S, Yoshioka M, Li S, Qiao J, Li X, Wang L, Kotera H, Nakatsuji N, Sawa Y, Chen Y, Liu L (2017) Human pluripotent stem cell-derived cardiac tissue-like constructs for repairing the infarcted Myocardium. Stem Cell Rep 9:1546–1559. https://doi.org/10.1016/j.stemcr.2017.09.007

    Article  CAS  Google Scholar 

  47. Lieu DK, Fu JD, Chiamvimonvat N, Tung KC, McNerney GP, Huser T, Keller G, Kong CW, Li RA (2013) Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythmia Electrophysiol 6:191–201. https://doi.org/10.1161/circep.111.973420

    Article  Google Scholar 

  48. Lu HR, Mariën R, Saels A, De Clerck F (2001) Species plays an important role in drug-induced prolongation of action potential duration and early afterdepolarizations in isolated Purkinje fibers. J Cardiovasc Electrophysiol 12:93–102. https://doi.org/10.1046/j.1540-8167.2001.00093.x

    Article  CAS  PubMed  Google Scholar 

  49. Lundy SD, Zhu WZ, Regnier M, Laflamme MA (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22:1991–2002. https://doi.org/10.1089/scd.2012.0490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandavia CH, Aroor AR, Demarco VG, Sowers JR (2013) Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci 92:601–608. https://doi.org/10.1016/j.lfs.2012.10.028

    Article  CAS  PubMed  Google Scholar 

  51. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92:785–789. https://doi.org/10.1161/01.cir.92.4.785

    Article  CAS  PubMed  Google Scholar 

  52. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816. https://doi.org/10.1161/circulationaha.106.174287

    Article  PubMed  Google Scholar 

  53. Mills RJ, Parker BL, Quaife-Ryan GA, Voges HK, Needham EJ, Bornot A, Ding M, Andersson H, Polla M, Elliott DA, Drowley L, Clausen M, Plowright AT, Barrett IP, Wang QD, James DE, Porrello ER, Hudson JE (2019) Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24:895–907.e896. https://doi.org/10.1016/j.stem.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  54. Moolman-Smook JC, Mayosi BM, Brink PA, Corfield VA (2003) Molecular genetics of cardiomyopathy: changing times, shifting paradigms. Cardiovasc J S Afr 14:145–155

    PubMed  Google Scholar 

  55. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L, Dorn T, Goedel A, Höhnke C, Hofmann F, Seyfarth M, Sinnecker D, Schömig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409. https://doi.org/10.1056/NEJMoa0908679

    Article  CAS  PubMed  Google Scholar 

  56. Mörner S, Richard P, Kazzam E, Hellman U, Hainque B, Schwartz K, Waldenström A (2003) Identification of the genotypes causing hypertrophic cardiomyopathy in northern Sweden. J Mol Cell Cardiol 35:841–849. https://doi.org/10.1016/s0022-2828(03)00146-9

    Article  PubMed  Google Scholar 

  57. Navaei A, Truong D, Heffernan J, Cutts J, Brafman D, Sirianni RW, Vernon B, Nikkhah M (2016) PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta Biomater 32:10–23. https://doi.org/10.1016/j.actbio.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  58. Neves SC, Moroni L, Barrias CC, Granja PL (2020) Leveling up hydrogels: hybrid systems in tissue engineering. Trends Biotechnol 38:292–315. https://doi.org/10.1016/j.tibtech.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  59. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature Methods 10:781–787. https://doi.org/10.1038/nmeth.2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oh JG, Ishikawa K (2018) Experimental models of cardiovascular diseases: overview. Methods Mol Biol (Clifton, NJ) 1816:3–14. https://doi.org/10.1007/978-1-4939-8597-5_1

    Article  CAS  Google Scholar 

  61. Oktay AA, Akturk HK, Esenboga K, Javed F, Polin NM, Jahangir E (2018) Pathophysiology and prevention of heart disease in diabetes mellitus. Curr Probl Cardiol 43:68–110. https://doi.org/10.1016/j.cpcardiol.2017.05.001

    Article  PubMed  Google Scholar 

  62. Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14:10. https://doi.org/10.1186/s12916-016-0553-2

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O (2020) Drug development and the use of induced pluripotent stem cell-derived cardiomyocytes for disease modeling and drug toxicity screening. Int J Mol Sci 21. https://doi.org/10.3390/ijms21197320

  64. Paneni F, Costantino S, Cosentino F (2014) Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 16:419. https://doi.org/10.1007/s11883-014-0419-z

    Article  CAS  PubMed  Google Scholar 

  65. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, DeSimone L, Coltorti F, Bloise R, Keegan R, Cruz Filho FE, Vignati G, Benatar A, DeLogu A (2002) Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106:69–74. https://doi.org/10.1161/01.cir.0000020013.73106.d8

    Article  CAS  PubMed  Google Scholar 

  66. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200. https://doi.org/10.1161/01.cir.103.2.196

    Article  CAS  PubMed  Google Scholar 

  67. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, Blom N, Brugada J, Chiang CE, Huikuri H, Kannankeril P, Krahn A, Leenhardt A, Moss A, Schwartz PJ, Shimizu W, Tomaselli G, Tracy C (2013) HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 10:1932–1963. https://doi.org/10.1016/j.hrthm.2013.05.014

    Article  PubMed  Google Scholar 

  68. Protze SI, Lee JH, Keller GM (2019) Human pluripotent stem cell-derived cardiovascular cells: from developmental biology to therapeutic applications. Cell Stem Cell 25:311–327. https://doi.org/10.1016/j.stem.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  69. Reid BG, Stratton MS, Bowers S, Cavasin MA, Demos-Davies KM, Susano I, McKinsey TA (2016) Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol 97:106–113. https://doi.org/10.1016/j.yjmcc.2016.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rivenes SM, Kearney DL, Smith EO, Towbin JA, Denfield SW (2000) Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. Circulation 102:876–882. https://doi.org/10.1161/01.cir.102.8.876

    Article  CAS  PubMed  Google Scholar 

  71. Roden DM (2008) Long-QT syndrome. New Engl J Med 358:169–176. https://doi.org/10.1056/NEJMcp0706513

    Article  CAS  PubMed  Google Scholar 

  72. Rodrigues ICP, Kaasi A, Maciel Filho R, Jardini AL, Gabriel LP (2018) Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo) 16:eRB4538. https://doi.org/10.1590/s1679-45082018rb4538

    Article  Google Scholar 

  73. Sandu N, Schaller B (2010) Stem cell transplantation in brain tumors: a new field for molecular imaging? Mol Med (Cambridge, Mass) 16:433–437. https://doi.org/10.2119/molmed.2010.00035

    Article  CAS  Google Scholar 

  74. Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME (2007) Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells (Dayton, Ohio) 25:1136–1144. https://doi.org/10.1634/stemcells.2006-0466

    Article  CAS  Google Scholar 

  75. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, Gabbarini F, Goulene K, Insolia R, Mannarino S, Mosca F, Nespoli L, Rimini A, Rosati E, Salice P, Spazzolini C (2009) Prevalence of the congenital long-qt syndrome. Circulation 120:1761–1767. https://doi.org/10.1161/CIRCULATIONAHA.109.863209

    Article  PubMed  PubMed Central  Google Scholar 

  76. Seidman CE, Seidman JG (1998) Molecular genetic studies of familial hypertrophic cardiomyopathy. Basic Res Cardiol 93(Suppl 3):13–16. https://doi.org/10.1007/s003950050196

    Article  CAS  PubMed  Google Scholar 

  77. Sharma A, Burridge PW, McKeithan WL, Serrano R, Shukla P, Sayed N, Churko JM, Kitani T, Wu H, Holmström A, Matsa E, Zhang Y, Kumar A, Fan AC, Del Álamo JC, Wu SM, Moslehi JJ, Mercola M, Wu JC (2017) High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aaf2584

  78. Sharma A, Marceau C, Hamaguchi R, Burridge PW, Rajarajan K, Churko JM, Wu H, Sallam KI, Matsa E, Sturzu AC, Che Y, Ebert A, Diecke S, Liang P, Red-Horse K, Carette JE, Wu SM, Wu JC (2014) Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ Res 115:556–566. https://doi.org/10.1161/circresaha.115.303810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sharma A, McKeithan WL, Serrano R, Kitani T, Burridge PW, Del Álamo JC, Mercola M, Wu JC (2018) Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nat Protocol 13:3018–3041. https://doi.org/10.1038/s41596-018-0076-8

    Article  CAS  Google Scholar 

  80. Stockbridge N, Morganroth J, Shah RR, Garnett C (2013) Dealing with global safety issues : was the response to QT-liability of non-cardiac drugs well coordinated? Drug Saf 36:167–182. https://doi.org/10.1007/s40264-013-0016-z

    Article  PubMed  Google Scholar 

  81. Sullivan PW, Ghushchyan V, Wyatt HR, Wu EQ, Hill JO (2007) Impact of cardiometabolic risk factor clusters on health-related quality of life in the U.S. Obesity (Silver Spring) 15:511–521. https://doi.org/10.1038/oby.2007.580

    Article  Google Scholar 

  82. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4:130ra147. https://doi.org/10.1126/scitranslmed.3003552

    Article  Google Scholar 

  83. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988. https://doi.org/10.1161/01.cir.101.25.2981

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  85. Tallquist MD, Molkentin JD (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14:484–491. https://doi.org/10.1038/nrcardio.2017.57

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tarnavski O (2009) Mouse surgical models in cardiovascular research. Methods Mol Biol (Clifton, NJ) 573:115–137. https://doi.org/10.1007/978-1-60761-247-6_7

    Article  Google Scholar 

  87. Venetucci L, Denegri M, Napolitano C, Priori SG (2012) Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat Rev Cardiol 9:561–575. https://doi.org/10.1038/nrcardio.2012.93

    Article  CAS  PubMed  Google Scholar 

  88. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Med 20:616–623. https://doi.org/10.1038/nm.3545

    Article  CAS  PubMed  Google Scholar 

  89. Weber KT (2000) Fibrosis and hypertensive heart disease. Curr Opin Cardiol 15:264–272. https://doi.org/10.1097/00001573-200007000-00010

    Article  CAS  PubMed  Google Scholar 

  90. Weber KT (2005) Are myocardial fibrosis and diastolic dysfunction reversible in hypertensive heart disease? Congest Heart Fail 11:322–324; quiz 325. https://doi.org/10.1111/j.1527-5299.2005.04479.x

    Article  PubMed  Google Scholar 

  91. Wilde AAM, Tan HL (2007) Inherited arrhythmia syndromes. Circ J 71:A12–A19. https://doi.org/10.1253/circj.71.A12

    Article  PubMed  Google Scholar 

  92. Wu AH (2008) Cardiotoxic drugs: clinical monitoring and decision making. Heart (British Cardiac Society) 94:1503–1509. https://doi.org/10.1136/hrt.2007.133876

    Article  CAS  Google Scholar 

  93. Wu Y, Wang L, Guo B, Ma PX (2017) Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy. ACS Nano 11:5646–5659. https://doi.org/10.1021/acsnano.7b01062

    Article  CAS  PubMed  Google Scholar 

  94. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Murry CE (2014) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296–304. https://doi.org/10.1016/j.yjmcc.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang S, Wang H (2019) Current progress in 3D bioprinting of tissue analogs. SLAS Technol 24:70–78. https://doi.org/10.1177/2472630318799971

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all lab members for helpful discussion.

Funding

N.C. is funded by the National Key R&D Program of China (2018YFA0109100 and 2018YFA050830), the National Natural Science Foundation of China (31771508), and the Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06S029).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.C., G.L., and Z.L.; manuscript writing, N.C., G.L., Z.L.; funding acquisition, N.C.; supervision, N.C.

Corresponding author

Correspondence to Nan Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Recent Progress with hPSCs for Drug Discovery in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Liu, Z. & Cao, N. Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery. Pflugers Arch - Eur J Physiol 473, 1087–1097 (2021). https://doi.org/10.1007/s00424-021-02542-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02542-1

Keywords

Navigation