Skip to main content
Log in

Taste transduction and channel synapses in taste buds

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The variety of taste sensations, including sweet, umami, bitter, sour, and salty, arises from diverse taste cells, each of which expresses specific taste sensor molecules and associated components for downstream signal transduction cascades. Recent years have witnessed major advances in our understanding of the molecular mechanisms underlying transduction of basic tastes in taste buds, including the identification of the bona fide sour sensor H+ channel OTOP1, and elucidation of transduction of the amiloride-sensitive component of salty taste (the taste of sodium) and the TAS1R-independent component of sweet taste (the taste of sugar). Studies have also discovered an unconventional chemical synapse termed “channel synapse” which employs an action potential-activated CALHM1/3 ion channel instead of exocytosis of synaptic vesicles as the conduit for neurotransmitter release that links taste cells to afferent neurons. New images of the channel synapse and determinations of the structures of CALHM channels have provided structural and functional insights into this unique synapse. In this review, we discuss the current view of taste transduction and neurotransmission with emphasis on recent advances in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    CAS  PubMed  Google Scholar 

  2. Anand KK, Zuniga JR (1997) Effect of amiloride on suprathreshold NaCl, LiCl, and KCl salt taste in humans. Physiol Behav 62:925–929

    CAS  PubMed  Google Scholar 

  3. Bartel DL, Sullivan SL, Lavoie EG, Sevigny J, Finger TE (2006) Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol 497:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bigiani A (2017) Calcium homeostasis modulator 1-like currents in rat fungiform taste cells expressing amiloride-sensitive sodium currents. Chem Senses 42:343–359

    CAS  PubMed  Google Scholar 

  5. Bigiani A (2020) Does ENaC work as sodium taste receptor in humans? Nutrients 12:1195

    CAS  PubMed Central  Google Scholar 

  6. Bigiani A, Cuoghi V (2007) Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells. J Neurophysiol 98:2483–2487

    CAS  PubMed  Google Scholar 

  7. Bo X, Alavi A, Xiang Z, Oglesby I, Ford A, Burnstock G (1999) Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. Neuroreport 10:1107–1111

    CAS  PubMed  Google Scholar 

  8. Bushman JD, Ye W, Liman ER (2015) A proton current associated with sour taste: distribution and functional properties. FASEB J 29:3014–3026

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    CAS  PubMed  Google Scholar 

  10. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS (2010) The cells and peripheral representation of sodium taste in mice. Nature 464:297–301

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    CAS  PubMed  Google Scholar 

  12. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zuker CS (2009) The taste of carbonation. Science 326:443–445

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang RB, Waters H, Liman ER (2010) A proton current drives action potentials in genetically identified sour taste cells. Proc Natl Acad Sci U S A 107:22320–22325

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaudhari N, Landin AM, Roper SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3:113–119

    CAS  PubMed  Google Scholar 

  15. Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190:285–296

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi W, Clemente N, Sun W, Du J, Lu W (2019) The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 576:163–167

    CAS  PubMed  Google Scholar 

  17. Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC (2004) Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 468:311–321

    CAS  PubMed  Google Scholar 

  18. Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Perez CA, Shigemura N, Yoshida R, Mosinger B Jr, Glendinning JI, Ninomiya Y, Margolskee RF (2006) Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31:253–264

    CAS  PubMed  Google Scholar 

  19. Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850–853

    CAS  PubMed  Google Scholar 

  20. Dando R, Roper SD (2009) Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. J Physiol 587:5899–5906

    CAS  PubMed  PubMed Central  Google Scholar 

  21. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N (2006) Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci 26:3971–3980

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Demura K, Kusakizako T, Shihoya W, Hiraizumi M, Nomura K, Shimada H, Yamashita K, Nishizawa T, Taruno A, Nureki O (2020) Cryo-EM structures of calcium homeostasis modulator channels in diverse oligomeric assemblies. Sci Adv 6:eaba8105

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Doolin RE, Gilbertson TA (1996) Distribution and characterization of functional amiloride-sensitive sodium channels in rat tongue. J Gen Physiol 107:545–554

    CAS  PubMed  Google Scholar 

  24. Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, Pasquier F, Galimberti D, Scarpini E, Mann D, Lendon C, Campion D, Amouyel P, Davies P, Foskett JK, Campagne F, Marambaud P (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer’s disease risk. Cell 133:1149–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Drozdzyk K, Sawicka M, Bahamonde-Santos MI, Jonas Z, Deneka D, Albrecht C, Dutzler R (2020) Cryo-EM structures and functional properties of CALHM channels of the human placenta. Elife 9:e55853

    PubMed  PubMed Central  Google Scholar 

  26. Dutta Banik D, Martin LE, Freichel M, Torregrossa AM, Medler KF (2018) TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc Natl Acad Sci U S A 115:E772–E781

    PubMed  PubMed Central  Google Scholar 

  27. Elliott EJ, Simon SA (1990) The anion in salt taste: a possible role for paracellular pathways. Brain Res 535:9–17

    CAS  PubMed  Google Scholar 

  28. Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499

    CAS  PubMed  Google Scholar 

  29. Halpern BP (1998) Amiloride and vertebrate gustatory responses to NaCl. Neurosci Biobehav Rev 23:5–47

    CAS  PubMed  Google Scholar 

  30. Heck GL, Mierson S, DeSimone JA (1984) Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223:403–405

    CAS  PubMed  Google Scholar 

  31. Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, Ogawa N, Kuroda Y, Yoshida R, Ninomiya Y, Mikoshiba K (2007) Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. J Biol Chem 282:37225–37231

    CAS  PubMed  Google Scholar 

  32. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    CAS  PubMed  Google Scholar 

  33. Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H, Ninomiya Y (2011) Sour taste responses in mice lacking PKD channels. PLoS One 6:e20007

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Trankner D, Ryba NJ, Zuker CS (2006) The cells and logic for mammalian sour taste detection. Nature 442:934–938

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 104:6436–6441

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 103:12569–12574

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwatsuki K, Uneyama H (2012) Sense of taste in the gastrointestinal tract. J Pharmacol Sci 118:123–128

    CAS  PubMed  Google Scholar 

  38. Kashio M, Wei-Qi G, Ohsaki Y, Kido MA, Taruno A (2019) CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Sci Rep 9:2681

    PubMed  PubMed Central  Google Scholar 

  39. Kretz O, Barbry P, Bock R, Lindemann B (1999) Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J Histochem Cytochem 47:51–64

    CAS  PubMed  Google Scholar 

  40. Kusuhara Y, Yoshida R, Ohkuri T, Yasumatsu K, Voigt A, Hubner S, Maeda K, Boehm U, Meyerhof W, Ninomiya Y (2013) Taste responses in mice lacking taste receptor subunit T1R1. J Physiol 591:1967–1985

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Larson ED, Vandenbeuch A, Voigt A, Meyerhof W, Kinnamon SC, Finger TE (2015) The role of 5-HT3 receptors in signaling from taste buds to nerves. J Neurosci 35:15984–15995

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewandowski BC, Sukumaran SK, Margolskee RF, Bachmanov AA (2016) Amiloride-insensitive salt taste is mediated by two populations of type III taste cells with distinct transduction mechanisms. J Neurosci 36:1942–1953

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci U S A 100:15160–15165

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lossow K, Hermans-Borgmeyer I, Meyerhof W, Behrens M (2020) Segregated expression of ENaC subunits in taste cells. Chem Senses 45:235–248

    CAS  PubMed  Google Scholar 

  45. Ma J, Qi X, Yang C, Pan R, Wang S, Wu J, Huang L, Chen H, Cheng J, Wu R, Liao Y, Mao L, Wang FC, Wu Z, An JX, Wang Y, Zhang X, Zhang C, Yuan Z (2018) Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 23:883–891

    CAS  PubMed  Google Scholar 

  46. Ma Z, Saung WT, Foskett JK (2017) Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells. J Neurophysiol 117:1865–1876

    PubMed  PubMed Central  Google Scholar 

  47. Ma Z, Siebert AP, Cheung KH, Lee RJ, Johnson B, Cohen AS, Vingtdeux V, Marambaud P, Foskett JK (2012) Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc Natl Acad Sci U S A 109:E1963–E1971

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma Z, Taruno A, Ohmoto M, Jyotaki M, Lim JC, Miyazaki H, Niisato N, Marunaka Y, Lee RJ, Hoff H, Payne R, Demuro A, Parker I, Mitchell CH, Henao-Mejia J, Tanis JE, Matsumoto I, Tordoff MG, Foskett JK (2018) CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron 98:547–561

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsumoto I, Emori Y, Nakamura S, Shimizu K, Arai S, Abe K (2003) DNA microarray cluster analysis reveals tissue similarity and potential neuron-specific genes expressed in cranial sensory ganglia. J Neurosci Res 74:818–828

    CAS  PubMed  Google Scholar 

  50. McCutcheon NB (1992) Human psychophysical studies of saltiness suppression by amiloride. Physiol Behav 51:1069–1074

    CAS  PubMed  Google Scholar 

  51. Medler KF, Margolskee RF, Kinnamon SC (2003) Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice. J Neurosci 23:2608–2617

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Miyamoto T, Miyazaki T, Okada Y, Sato T (1996) Whole-cell recording from non-dissociated taste cells in mouse taste bud. J Neurosci Methods 64:245–252

    CAS  PubMed  Google Scholar 

  53. Moyer BD, Hevezi P, Gao N, Lu M, Kalabat D, Soto H, Echeverri F, Laita B, Yeh SA, Zoller M, Zlotnik A (2009) Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations. PLoS One 4:e7682

    PubMed  PubMed Central  Google Scholar 

  54. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J, Global Burden of Diseases N, Chronic Diseases Expert G (2014) Global sodium consumption and death from cardiovascular causes. N Engl J Med 371:624–634

    PubMed  Google Scholar 

  55. Murata Y, Yasuo T, Yoshida R, Obata K, Yanagawa Y, Margolskee RF, Ninomiya Y (2010) Action potential-enhanced ATP release from taste cells through hemichannels. J Neurophysiol 104:896–901

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Murtaza B, Hichami A, Khan AS, Ghiringhelli F, Khan NA (2017) Alteration in taste perception in cancer: causes and strategies of treatment. Front Physiol 8:134

    PubMed  PubMed Central  Google Scholar 

  57. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202

    CAS  PubMed  Google Scholar 

  58. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390

    CAS  PubMed  Google Scholar 

  59. Ninomiya Y (1998) Reinnervation of cross-regenerated gustatory nerve fibers into amiloride-sensitive and amiloride-insensitive taste receptor cells. Proc Natl Acad Sci U S A 95:5347–5350

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A (2020) All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds. Neuron 106:816–829

    CAS  PubMed  Google Scholar 

  61. Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I (2018) Structure of the human epithelial sodium channel by cryo-electron microscopy. Elife 7:e39340

    PubMed  PubMed Central  Google Scholar 

  62. Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494:472–475

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ossebaard CA, Smith DV (1995) Effect of amiloride on the taste of NaCl, Na-gluconate and KCl in humans: implications for Na+ receptor mechanisms. Chem Senses 20:37–46

    CAS  PubMed  Google Scholar 

  64. Ossebaard CA, Smith DV (1996) Amiloride suppresses the sourness of NaCl and LiCl. Physiol Behav 60:1317–1322

    CAS  PubMed  Google Scholar 

  65. Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    CAS  PubMed  Google Scholar 

  66. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 100:15166–15171

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ren Y, Wen T, Xi Z, Li S, Lu J, Zhang X, Yang X, Shen Y (2020) Cryo-EM structure of the calcium homeostasis modulator 1 channel. Sci Adv 6:eaba8161

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Richter TA, Caicedo A, Roper SD (2003) Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J Physiol 547:475–483

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Richter TA, Dvoryanchikov GA, Roper SD, Chaudhari N (2004) Acid-sensing ion channel-2 is not necessary for sour taste in mice. J Neurosci 24:4088–4091

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Roebber JK, Roper SD, Chaudhari N (2019) The role of the anion in salt (NaCl) detection by mouse taste buds. J Neurosci 39:6224–6232

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Romanov RA, Bystrova MF, Rogachevskaya OA, Sadovnikov VB, Shestopalov VI, Kolesnikov SS (2012) The ATP permeability of pannexin 1 channels in a heterologous system and in mammalian taste cells is dispensable. J Cell Sci 125:5514–5523

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Romanov RA, Lasher RS, High B, Savidge LE, Lawson A, Rogachevskaja OA, Zhao H, Rogachevsky VV, Bystrova MF, Churbanov GD, Adameyko I, Harkany T, Yang R, Kidd GJ, Marambaud P, Kinnamon JC, Kolesnikov SS, Finger TE (2018) Chemical synapses without synaptic vesicles: purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Sci Signal 11:eaao1815

    PubMed  PubMed Central  Google Scholar 

  73. Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS (2007) Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26:657–667

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Romanov RA, Rogachevskaja OA, Khokhlov AA, Kolesnikov SS (2008) Voltage dependence of ATP secretion in mammalian taste cells. J Gen Physiol 132:731–744

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Roper SD (2015) The taste of table salt. Pflugers Arch 467:457–463

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH, Kaplan JP, Sansom MSP, Liman ER, Ward AB (2019) Structures of the otopetrin proton channels Otop1 and Otop3. Nat Struct Mol Biol 26:518–525

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schiffman SS, Lockhead E, Maes FW (1983) Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc Natl Acad Sci U S A 80:6136–6140

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sclafani A, Ackroff K (2018) Greater reductions in fat preferences in CALHM1 than CD36 knockout mice. Am J Phys Regul Integr Comp Phys 315:R576–R585

    CAS  Google Scholar 

  79. Shigemura N, Ninomiya Y (2016) Recent advances in molecular mechanisms of taste signaling and modifying. Int Rev Cell Mol Biol 323:71–106

    CAS  PubMed  Google Scholar 

  80. Siebert AP, Ma Z, Grevet JD, Demuro A, Parker I, Foskett JK (2013) Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem 288:6140–6153

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith DV, Ossebaard CA (1995) Amiloride suppression of the taste intensity of sodium chloride: evidence from direct magnitude scaling. Physiol Behav 57:773–777

    CAS  PubMed  Google Scholar 

  82. Stähler F, Riedel K, Demgensky S, Neumann K, Dunkel A, Täubert A, Raab B, Behrens M, Raguse JD, Hofmann T, Meyerhof W (2008) A role of the epithelial sodium channel in human salt taste transduction? Chemosens Percept 1:78–90

    Google Scholar 

  83. Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B (2001) Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413:631–635

    CAS  PubMed  Google Scholar 

  84. Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP (2009) Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339:b4567

    PubMed  PubMed Central  Google Scholar 

  85. Syrjanen JL, Michalski K, Chou TH, Grant T, Rao S, Simorowski N, Tucker SJ, Grigorieff N, Furukawa H (2020) Structure and assembly of calcium homeostasis modulator proteins. Nat Struct Mol Biol 27:150–159

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tan HE, Sisti AC, Jin H, Vignovich M, Villavicencio M, Tsang KS, Goffer Y, Zuker CS (2020) The gut-brain axis mediates sugar preference. Nature 580:511–516

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanis JE, Ma Z, Krajacic P, He L, Foskett JK, Lamitina T (2013) CLHM-1 is a functionally conserved and conditionally toxic Ca2+-permeable ion channel in Caenorhabditis elegans. J Neurosci 33:12275–12286

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Taruno A (2018) ATP Release Channels. Int J Mol Sci 19:808

    PubMed Central  Google Scholar 

  89. Taruno A, Matsumoto I, Ma Z, Marambaud P, Foskett JK (2013) How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. Bioessays 35:1111–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Taruno A, Sun H, Nakajo K, Murakami T, Ohsaki Y, Kido MA, Ono F, Marunaka Y (2017) Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel. J Physiol 595:6121–6145

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495:223–226

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Teng B, Wilson CE, Tu YH, Joshi NR, Kinnamon SC, Liman ER (2019) Cellular and neural responses to sour stimuli require the proton channel Otop1. Curr Biol 29:3647–3656 e3645

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tennissen AM (1992) Amiloride reduces intensity responses of human fungiform papillae. Physiol Behav 51:1061–1068

    CAS  PubMed  Google Scholar 

  94. Tennissen AM, McCutcheon NB (1996) Anterior tongue stimulation with amiloride suppresses NaCl saltiness, but not citric acid sourness in humans. Chem Senses 21:113–120

    CAS  PubMed  Google Scholar 

  95. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    CAS  PubMed  Google Scholar 

  96. Tordoff MG, Aleman TR, Ellis HT, Ohmoto M, Matsumoto I, Shestopalov VI, Mitchell CH, Foskett JK, Poole RL (2015) Normal taste acceptance and preference of PANX1 knockout mice. Chem Senses 40:453–459

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tordoff MG, Ellis HT, Aleman TR, Downing A, Marambaud P, Foskett JK, Dana RM, McCaughey SA (2014) Salty taste deficits in CALHM1 knockout mice. Chem Senses 39:515–528

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tu YH, Cooper AJ, Teng B, Chang RB, Artiga DJ, Turner HN, Mulhall EM, Ye W, Smith AD, Liman ER (2018) An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359:1047–1050

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S (1998) Receptor that leaves a sour taste in the mouth. Nature 395:555–556

    CAS  PubMed  Google Scholar 

  100. Vandenbeuch A, Anderson CB, Kinnamon SC (2015) Mice lacking pannexin 1 release ATP and respond normally to all taste qualities. Chem Senses 40:461–467

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Vandenbeuch A, Anderson CB, Parnes J, Enjyoji K, Robson SC, Finger TE, Kinnamon SC (2013) Role of the ectonucleotidase NTPDase2 in taste bud function. Proc Natl Acad Sci U S A 110:14789–14794

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Vandenbeuch A, Clapp TR, Kinnamon SC (2008) Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 9:1

    PubMed  PubMed Central  Google Scholar 

  103. Vandenbeuch A, Zorec R, Kinnamon SC (2010) Capacitance measurements of regulated exocytosis in mouse taste cells. J Neurosci 30:14695–14701

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M (1995) Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J Biol Chem 270:27411–27414

    CAS  PubMed  Google Scholar 

  105. Wang YY, Chang RB, Allgood SD, Silver WL, Liman ER (2011) A TRPA1-dependent mechanism for the pungent sensation of weak acids. J Gen Physiol 137:493–505

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wilson CE, Vandenbeuch A, Kinnamon SC (2019) Physiological and behavioral responses to optogenetic stimulation of PKD2L1+ type III taste cells. eNeuro 6:ENEURO.0107-19.2019

    PubMed  PubMed Central  Google Scholar 

  107. Yang W, Wang Y, Guo J, He L, Zhou Y, Zheng H, Liu Z, Zhu P, Zhang XC (2020) Cryo-electron microscopy structure of CLHM1 ion channel from Caenorhabditis elegans. Protein Sci 29:1803–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yasumatsu K, Manabe T, Yoshida R, Iwatsuki K, Uneyama H, Takahashi I, Ninomiya Y (2015) Involvement of multiple taste receptors in umami taste: analysis of gustatory nerve responses in metabotropic glutamate receptor 4 knockout mice. J Physiol 593:1021–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yasumatsu K, Ohkuri T, Yoshida R, Iwata S, Margolskee RF, Ninomiya Y (2020) Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue. Acta Physiol (Oxf):e13529

  110. Ye W, Chang RB, Bushman JD, Tu YH, Mulhall EM, Wilson CE, Cooper AJ, Chick WS, Hill-Eubanks DC, Nelson MT, Kinnamon SC, Liman ER (2016) The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci U S A 113:E229–E238

    CAS  PubMed  Google Scholar 

  111. Yee KK, Sukumaran SK, Kotha R, Gilbertson TA, Margolskee RF (2011) Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci U S A 108:5431–5436

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoshida R, Horio N, Murata Y, Yasumatsu K, Shigemura N, Ninomiya Y (2009) NaCl responsive taste cells in the mouse fungiform taste buds. Neuroscience 159:795–803

    CAS  PubMed  Google Scholar 

  113. Yoshida R, Shigemura N, Sanematsu K, Yasumatsu K, Ishizuka S, Ninomiya Y (2006) Taste responsiveness of fungiform taste cells with action potentials. J Neurophysiol 96:3088–3095

    PubMed  Google Scholar 

  114. Zhang J, Jin H, Zhang W, Ding C, O’Keeffe S, Ye M, Zuker CS (2019) Sour sensing from the tongue to the brain. Cell 179:392–402

    CAS  PubMed  Google Scholar 

  115. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    CAS  PubMed  Google Scholar 

  116. Zhang Z, Zhao Z, Margolskee R, Liman E (2007) The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27:5777–5786

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266

    CAS  PubMed  Google Scholar 

  118. Zocchi D, Wennemuth G, Oka Y (2017) The cellular mechanism for water detection in the mammalian taste system. Nat Neurosci 20:927–933

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Emily R. Liman (USC) for the critical reading of the manuscript.

Funding

This work was supported by JST PRESTO JPMJPR1886 (A.T.); JSPS KAKENHI 16H06294 (O.N.); 19H03819 and 20K04908 (A.T.); Salt Science Research Foundation 18C2, 19C2, and 20C2 (A.T.); NIH R01DC018278 (Z. M., J. K. F.); and Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED, under grant number JP19am01011115 (support number 1111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyuki Taruno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taruno, A., Nomura, K., Kusakizako, T. et al. Taste transduction and channel synapses in taste buds. Pflugers Arch - Eur J Physiol 473, 3–13 (2021). https://doi.org/10.1007/s00424-020-02464-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02464-4

Keywords

Navigation