Skip to main content

Advertisement

Log in

TASK channels: channelopathies, trafficking, and receptor-mediated inhibition

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

TWIK-related acid-sensitive K+ (TASK) channels contribute to the resting membrane potential in various kinds of cells, such as brain neurons, smooth muscle cells, and endocrine cells. Loss-of-function mutations at multiple sites in the KCNK3 gene encoding for TASK1 channels are one of the causes of pulmonary arterial hypertension in humans, whereas a mutation at only one site is reported for TASK3 channels, resulting in a syndrome of mental retardation, hypotonia, and facial dysmorphism. TASK channels are subject to regulation by G protein-coupled receptors (GPCRs). Two mechanisms have been proposed for the GPCR-mediated inhibition of TASK channels: a change in gating and channel endocytosis. The most feasible mechanism for altered gating is diacylglycerol binding to a site in the C-terminus, which is shared by TASK1 and TASK3. The inhibition of channel function by endocytosis requires the presence of a tyrosine residue subjected to phosphorylation by the non-receptor tyrosine kinase Src and a dileucine motif in the C-terminus of TASK1. Therefore, homomeric TASK1 and heteromeric TASK1-TASK3 channels, but not homomeric TASK3, are internalized by GPCR stimulation. Tyrosine phosphorylation by Src is expected to result in a conformational change in the C-terminus, allowing for AP-2, an adaptor protein for clathrin, to bind to the dileucine motif. It is likely that a raft membrane domain is a platform where TASK1 is located and the signaling molecules protein kinase C, Pyk2, and Src are recruited in sequence in response to GPCR stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aller MI, Veale EL, Linden A-M, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG (2005) Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci 25:11455–11467

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alfonso SI, Callender JA, Hooli B, Antal CE, Mullin K, Sherman MA, Lesné SE, Leitges M, Newton AC, Tanzi RE, Malinow R (2016) Gain-of-function mutations in protein kinase Cα (PKCα) may promote synaptic defects in Alzheimer’s disease. Sci Signal 9:ra47

    PubMed  PubMed Central  Google Scholar 

  3. Antigny F, Hautefort A, Meloche J, Belacel-Ouari M, Manoury B, Rucher-Martin C, Péchoux C, Potus F, Nadeau V, Tremblay E, Ruffenach G, Bourgeois A, Dorfmüller P, Breuils-Bonnet S, Fadel E, Ranchoux B, Jourdon P, Girerd B, Montani D, Provencher S, Bonnet S, Simonneau G, Jumbert M, Perros F (2016) Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension. Circulation 133:1371–1385

    CAS  PubMed  Google Scholar 

  4. Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J, Shorer Z, Mazor G, Finer G, Khateeb S, Zilberberg N, Birk OS (2008) Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in genomically imprinted potassium channel KCNK9. Am J Hum Genet 83:193–199

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bando Y, Hirano T, Tagawa Y (2012) Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex. Cereb Cortex 24:1017–1029

    PubMed  Google Scholar 

  6. Banga HS, Simons ER, Brass LF, Rittenhouse SE (1986) Activation of phospholipases A and C in human platelets exposed to epinephrine: role of glycoproteins IIb/IIa and dual role of epinephrine. Proc Natl Acad Sci U S A 83:9197–9201

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566–575

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Berg AP, Bayliss DA (2007) Striatal cholinergic interneurons express a receptor-insensitive homomeric TASK-3-like background K+ current. J Neurophysiol 97:1546–1552

    CAS  PubMed  Google Scholar 

  9. Berg AP, Talley EM, Manger JP, Bayliss DA (2004) Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693–6702

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohnen MS, Roman-Campos D, Terrenoire C, Jnani J, Sampson KJ, Chung WK, Kass RS (2017) The impact of heterozygous KCNK3 mutations associated with pulmonary arterial hypertension on channel function and pharmacological recovery. J Am Heart Assoc 6:e006465

    PubMed  PubMed Central  Google Scholar 

  11. Borthwick LA, McGaw J, Conner G, Taylor CJ, Gerke V, Mehta A, Robson L, Muimo R (2007) The formation of the cAMP/protein kinase A-dependent annexin 2-S100A10 complex with cystic fibrosis conductance regulator protein (CFTR) regulates CFTR channel function. Mol Biol Cell 18:3388–3397

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown AM (1967) Cardiac sympathetic adrenergic pathways in which synaptic transmission is blocked by atropine sulfate. J Physiol 191:271–288

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22:5403–5411

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheung TT, Ismail NAS, Moir R, Arora N, McDonald FJ, Condliffe SB (2019) Annexin II light chain p11 interacts with ENaC to increase functional activity at the membrane. Front Physiol 10:7

    PubMed  PubMed Central  Google Scholar 

  15. Collazos A, Diouf B, Guérineau NC, Quittau-Prévostel C, Peter M, Coudance F, Hollande F, Joubert D (2006) A spatiotemporally coordinated cascade of protein kinase C activation controls isoform-selective translocation. Mol Cell Biol 26:2247–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426–5432

    CAS  PubMed  Google Scholar 

  17. Czirjak G, Enyedi P (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 16:621–629

    CAS  PubMed  Google Scholar 

  18. Czirjak G, Petheo GL, Spat A, Enyedi P (2001) Inhibition of TASK-1 potassium channel by phospholipase C. Am J Physiol Cell Physiol 281:C700–C708

    CAS  PubMed  Google Scholar 

  19. Cunningham KP, Holden RG, Escribano-Subias PM, Cogolludo A, Veale EL, Mathie A (2019) Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension. J Physiol 597:1087–1101

    CAS  PubMed  Google Scholar 

  20. Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM, Carey RM, Bayliss DA, Barrett PQ (2008) TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci U S A 105:2203–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Decher N, Maier M, Dittrich W, Gassenhuber J, Bruggemann A, Busch AE, Steinmeyer K (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett 492:84–89

    CAS  PubMed  Google Scholar 

  22. Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476:1–23

    CAS  PubMed  Google Scholar 

  23. Dietrich A, Mederos y Schnitzler M, Kalwa H, Storch U, Gudermann T (2005) Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. Naunys-Schmiedeberg’s Arch Pharmacol 371:257–265

  24. Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA (1998) PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase. J Clin Invest 102:881–892

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Engen JR, Wales TE, Hochrein JM, Meyn MA III, Banu Ozkan S, Bahar I, Smithgall TE (2008) Structure and dynamic regulation of Src-family kinases. Cell Mol Life Sci 65:3058–3073

    CAS  PubMed  Google Scholar 

  26. Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    CAS  PubMed  Google Scholar 

  27. Evans JH, Murray D, Leslie CC, Falke JJ (2006) Specific translocation of protein kinase Calpha to the plasma membrane requires both Ca2+ and PIP2 recognition by its C2 domain. Mol Biol Cell 17:56–66

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Feliciangeli S, Chatelain FC, Bichet D, Lesage F (2015) The family of K2P channels: salient structural and functional properties. J Physiol 593:2587–2603

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Flower R, Gryglewski R, Herbaczyńska-Cedro VJR (1972) Effects of anti-inflammatory drugs on prostaglandin biosynthesis. Nature New Biology 238:104–106

    CAS  PubMed  Google Scholar 

  30. Friedrich C, Rinne S, Zumhagen S, Kiper AK, Silbernagel N, Netter MF, Stallmeyer B, Schulze-Bahr E, Decher N (2014) Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol Med 6:937–951

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Graham JW, Zadeh N, Kelley M, Tan ES, Liew W, Tan V, Deardorff MA, Wilson GN, Sagi-Dain L, Shalev SA (2016) KCNK9 imprinting syndrome-further delineation of a possible treatable disorder. Am J Med Genetics 170:2632–2637. https://doi.org/10.1002/ajmg.a.37740

    Article  CAS  Google Scholar 

  32. Guarina L, Vandael DHF, Carabelli V, Carbone E (2017) Low pHO boosts burst firing and catecholamine release by blocking TASK-1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. J Physiol 595:2587–2609

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamelink C, Tjurmina O, Damadzic R, Young WS, Weihe E, Lee HW, Eiden LE (2002) Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci U S A 99:461–466

    CAS  PubMed  Google Scholar 

  34. Harada K, Matsuoka H, Inoue M (2019) STIM1-dependent membrane insertion of heteromeric TRPC1-TRPC4 channels in response to muscarinic receptor stimulation. J Cell Sci 132:jcs227389. https://doi.org/10.1242/jcs.227389

  35. Harada K, Matsuoka H, Miyata H, Matsui M, Inoue M (2015) Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion. Br J Pharmacol 172:1348–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Harada K, Matsuoka H, Sata T, Warashina A, Inoue M (2011) Identification and role of muscarinic receptor subtypes expressed in rat adrenal medullary cells. J Pharmacol Sci 117:253–264

    CAS  PubMed  Google Scholar 

  37. Hardt B, Bause E (2002) Lysine can be replaced by histidine but not by arginine as the ER retrieval motif for type I membrane proteins. Biochem Biophys Res Commun 291:751–757

    CAS  PubMed  Google Scholar 

  38. Heitzmann D, Derand R, Jungbauer S, Bandulik S, Sterner C, Schweda F, El Wakil A, Lalli E, Guy N, Mengual R, Reichold M, Tegtmeier I, Bendahhou S, Gomez-Sanchez CE, Aller MI, Wisden W, Weber A, Lesage F, Warth R, Barhanin J (2008) Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J 27:179–187

    CAS  PubMed  Google Scholar 

  39. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    CAS  PubMed  Google Scholar 

  40. Holgert H, Holmberg K, Hannibal J, Fahrenkrug J, Brimijoin S, Hartman BK, Hökfelt T (1996) PACAP in the adrenal gland—relationship with choline acetyltransferase, enkephalin and chromaffin cells and effects of immunological sympathectomy. Neuroreport 8:297–301

    CAS  PubMed  Google Scholar 

  41. Hope HR, Pike LJ (1996) Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell 7:843–851

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Inoue M, Fujishiro N, Ogawa K, Muroi M, Sakamoto Y, Imanaga I, Shioda S (2000) Pituitary adenylate cyclase-activating polypeptide may function as a neuromodulator in guinea-pig adrenal medulla. J Physiol 528:473–487

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Inoue M, Harada K, Matsuoka H (2020) Mechanisms for pituitary adenylate cyclase-activating polypeptide-induced increase in excitability in guinea-pig and mouse adrenal medullary cells. Eur J Pharmacol 872:172956. https://doi.org/10.1016/j.ejphar.2020.172956

    Article  CAS  PubMed  Google Scholar 

  44. Inoue M, Harada K, Matsuoka H, Nakamura J, Warashina A (2012) Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells. Am J Physiol Cell Physiol 303:C635–C644

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Inoue M, Harada K, Matsuoka H, Sata T, Warashina A (2008) Inhibition of TASK1-like channels by muscarinic receptor stimulation in rat adrenal medullary cells. J Neurochem 106:1804–1814

    CAS  PubMed  Google Scholar 

  46. Inoue M, Matsuoka H, Harada K, Kao L-S (2018) Muscarinic receptors in adrenal chromaffin cells: physiological role and regulation of ion channels. Pflugers Arch 470:29–38

    CAS  PubMed  Google Scholar 

  47. Inoue M, Matsuoka H, Lesage F, Harada K (2019) Lack of p11 expression facilitates acidity-sensing function of TASK1 channels in mouse adrenal medullary cells. FASEB J 33:455–468

    CAS  PubMed  Google Scholar 

  48. Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang D, Han J, Talley EM, Bayliss DA, Kim D (2004) Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol 554:64–77

    CAS  PubMed  Google Scholar 

  50. Kilisch M, Lytovchenko O, Schwappach B, Renigunta V, Daut J (2015) The role of protein-protein interactions in the intracellular traffic of the potassium channels TASK-1 and TASK-3. Pflugers Arch 467:1105–1120

    CAS  PubMed  Google Scholar 

  51. Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587:2963–2975

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim D, Gnatenco C (2001) TASK-5, a new member of the tandem-pore K(+) channel family. Biochem Biophys Res Commun 284:923–930

    CAS  PubMed  Google Scholar 

  53. Konitsiotis AD, Rossmannek L, Stanoev A, Schmick M, Bastiaens PIH (2017) Spatial cycles mediated by UNC119 solubilisation maintain Src family kinases plasma membrane localisation. Nat Commun 8:114. https://doi.org/10.1038/s41467-017-00116-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee CH, MacKinnon R (2018) Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360:508–513

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6, and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43:506–514

    CAS  PubMed  Google Scholar 

  56. Lesage F, Barhanin J (2011) Molecular physiology of pH-sensitive background K2P channels. Physiology 26:424–437. https://doi.org/10.1152/physiol.00029.2011

    Article  CAS  PubMed  Google Scholar 

  57. Lindner M, Leitner MG, Halaszovich CR, Hammond GR, Oliver D (2011) Probing the regulation of TASK potassium channels by PI4,5P(2) with switchable phosphoinositide phosphatases. J Physiol 589:3149–3162

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lipinski CA, Loftus JC (2010) The Pyk2 FERM domain: a novel therapeutic target. Expert Opin Ther Targets 14:95–108

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 47:209–256

    CAS  PubMed  Google Scholar 

  60. Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol 564:117–129

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Tregouet DA, Borczuk A, Rosenzweig EB, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK (2013) A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369:351–361

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mant A, Elliott D, Eyers PA, O'Kelly IM (2011) Protein kinase A is central for forward transport of two-pore domain potassium channels K2P3.1 and K2P9.1. J Biol Chem 286:14110–14119

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578:377–385

    CAS  PubMed  Google Scholar 

  64. Matsuoka H, Harada K, Mashima K, Inoue M (2020) Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells. Cell Signal 65:109434

    CAS  PubMed  Google Scholar 

  65. Matsuoka H, Harada K, Nakamura J, Inoue M (2013) Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K(+) 1 channels in adrenal medullary cells and PC12 cells. Pflugers Arch 465:1051–1064

    CAS  PubMed  Google Scholar 

  66. Matsuoka H, Inoue M (2015) Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Am J Physiol Cell Physiol 309:C251–C263

    CAS  PubMed  Google Scholar 

  67. Matsuoka H, Inoue M (2017) Molecular mechanism for muscarinic M1 receptor-mediated endocytosis of TWIK-related acid-sensitive K(+) 1 channels in rat adrenal medullary cells. J Physiol 595:6851–6867

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Muimo R (2009) Regulation of CFTR function by annexin A2-S100A10 complex in health and disease. Gen Physiol Biophys 28:F14–F19

    PubMed  Google Scholar 

  69. Navas P, Tenorio J, Quezada CA, Barrios E, Gordo G, Arias P, Meseguer ML, Santos-Lozano A, Doza JP, Lapunzina P, Subías PE (2016) Molecular analysis of BMPR2, TBX4, and KCNK3 and genotype-phenotype correlations in Spanish patients and families with idiopathic and hereditary pulmonary arterial hypertension. Rev Esp Cardiol 69:1011–1019

    PubMed  Google Scholar 

  70. Navas Tejedor P, Tenorio Castaño J, Palomino Doza J, Arias Lajara P, Gordo Trujillo G, López Meseguer M, Román Broto A, Lapunzina Abadía P, Escribano Subías P (2017) An homozygous mutation in KCNK3 is associated with an aggressive form of hereditary pulmonary arterial hypertension. Clin Genet 91:453–457

    CAS  PubMed  Google Scholar 

  71. O’Driscoll KR, Teng KK, Fabbro D, Greene LA, Weinstein IB (1995) Selective translocation of protein kinase C-δ in PC12 cells during nerve growth factor-induced neuritogenesis. Mol Biol Cell 6:449–458

    PubMed  PubMed Central  Google Scholar 

  72. O'Kelly I (2015) Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K2P) channels. Pflugers Arch 467:1133–1142

    CAS  PubMed  Google Scholar 

  73. O'Kelly I, Goldstein SA (2008) Forward transport of K2p3.1: mediation by 14-3-3 and COPI, modulation by p11. Traffic 9:72–78

    CAS  PubMed  Google Scholar 

  74. Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417:653–656

    CAS  PubMed  Google Scholar 

  75. Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G, Antigny F, Lambert M, Humbert M, Czirjak G, Enyedi P, Mathie A (2017) TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur Respir J 50:1700754. https://doi.org/10.1183/13993003.00754-2017

  76. Patwardhan P, Resh MD (2010) Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 30:4094–4107

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Payet MD, Bilodeau L, Breault L, Fournier A, Yon L, Vaudry H, Gallo-Payet N (2003) PAC1 receptor activation by PACAP-38 mediates Ca2+ release from a cAMP-dependent pool in human fetal adrenal gland chromaffin cells. J Biol Chem 278:1663–1670

    CAS  PubMed  Google Scholar 

  78. Penton D, Bandulik S, Schweda F, Haubs S, Tauber P, Reichold M, Cong LD, El Wakil A, Budde T, Lesage F, Lalli E, Zennaro MC, Warth R, Barhanin J (2012) Task3 potassium channel gene invalidation causes low renin and salt-sensitive arterial hypertension. Endocrinology 153:4740–4748

    CAS  PubMed  Google Scholar 

  79. Pignatti E, Leng S, Carlone DL, Breault DT (2017) Regulation of zonation and homeostasis in the adrenal cortex. Mol Cell Endocrinol 441:146–155

    CAS  PubMed  Google Scholar 

  80. Poon WY, Malik-Hall M, Wood JN, Okuse K (2004) Identification of binding domains in the sodium channel Na(V)1.8 intracellular N-terminal region and annexin II light chain p11. FEBS Lett 358:114–118

    Google Scholar 

  81. Rajan S, Preisig-Muller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthorl G, Derst C, Karschin A, Daut J (2002) Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol 545:13–26

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564

    CAS  Google Scholar 

  83. Renigunta V, Yuan H, Zuzarte M, Rinne S, Koch A, Wischmeyer E, Schlichthorl G, Gao Y, Karschin A, Jacob R, Schwappach B, Daut J, Preisig-Muller R (2006) The retention factor p11 confers an endoplasmic reticulum-localization signal to the potassium channel TASK-1. Traffic 7:168–181

    CAS  PubMed  Google Scholar 

  84. Rescher U, Gerke V (2008) S100A10/p11: family, friends and functions. Pflugers Arch 455:575–582

    CAS  PubMed  Google Scholar 

  85. Rinne S, Kiper AK, Schlichthorl G, Dittmann S, Netter MF, Limberg SH, Silbernagel N, Zuzarte M, Moosdorf R, Wulf H, Schulze-Bahr E, Rolfes C, Decher N (2015) TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes. J Mol Cell Cardiol 81:71–80

    CAS  PubMed  Google Scholar 

  86. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protoc 5:725–738

    CAS  Google Scholar 

  87. Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275:41447–41457

    CAS  PubMed  Google Scholar 

  88. Schiekel J, Lindner M, Hetzel A, Wemhoner K, Renigunta V, Schlichthorl G, Decher N, Oliver D, Daut J (2013) The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res 97:97–105

    CAS  PubMed  Google Scholar 

  89. Schmidt C, Wiedmann F, Voigt N, Zhou XB, Heijman J, Lang S, Albert V, Kallenberger S, Ruhparwar A, Szabo G, Kallenbach K, Karck M, Borggrefe M, Biliczki P, Ehrlich JR, Baczko I, Lugenbiel P, Schweizer PA, Donner BC, Katus HA, Dobrev D, Thomas D (2015) Upregulation of K(2P)3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 132:82–92

    CAS  PubMed  Google Scholar 

  90. Šedivá M, Laššuthová P, Zámečník J, Sedláčková L, Seeman P, Haberlová J (2020) Novel variant in the KCNK9 gene in a girl with Birk Barel syndrome. Eur J Med Genet 63:103619

    PubMed  Google Scholar 

  91. Seyler C, Duthil-Straub E, Zitron E, Gierten J, Scholz EP, Fink RH, Karle CA, Becker R, Katus HA, Thomas D (2012) TASK1 (K(2P)3.1) K(+) channel inhibition by endothelin-1 is mediated through Rho kinase-dependent phosphorylation. Br J Pharmacol 165:1467–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith CB, Eiden LE (2012) Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? J Mol Neurosci 48:403–412

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Suzuki Y, Tsutsumi K, Miyamoto T, Yamamura H, Imaizumi Y (2017) Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. PLoS One 12:e0186252

    PubMed  PubMed Central  Google Scholar 

  94. Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, Vaugeois JM, Nomikos GG, Greengard P (2006) Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311:77–80

    CAS  PubMed  Google Scholar 

  95. Svenningsson P, Kim Y, Warner-Schmidt J, Oh YS, Greengard P (2013) P11 and its role in depression and therapeutic responses to antidepressants. Nat Rev Neurosci 14:673–680

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Talley EM, Bayliss DA (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277:17733–17742

    CAS  PubMed  Google Scholar 

  97. Talley EM, Solórzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tang B, Li Y, Nagaraj C, Morty RE, Gabor S, Stacher E, Voswinckel R, Weissmann N, Leithner K, Olschewski H, Olschewski A (2009) Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 41:476–483

    CAS  PubMed  Google Scholar 

  99. Thangaraju A, Sawyer GW (2011) Comparison of the kinetics and extent of muscarinic M1-M5 receptor internalization, recycling and downregulation in Chinese hamster ovary cells. Eur J Pharmacol 650:534–543

    CAS  PubMed  Google Scholar 

  100. Turner PJ, Buckler KJ (2013) Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. J Physiol 591:5977–5998

    CAS  PubMed  PubMed Central  Google Scholar 

  101. van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJM (2003) Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J 22:1478–1487

    PubMed  PubMed Central  Google Scholar 

  102. Veale EL, Kennard LE, Sutton GL, MacKenzie G, Sandu C, Mathie A (2007) G(alpha)q-mediated regulation of TASK3 two-pore domain potassium channels: the role of protein kinase C. Mol Pharmacol 71:1666–1675

    CAS  PubMed  Google Scholar 

  103. Washburn CP, Sirois JE, Talley EM, Guyenet PG, Bayliss DA (2002) Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J Neurosci 22:1256–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wiedmann F, Schulte JS, Gomes B, Zafeiriou MP, Ratte A, Rathjens F, Fehrmann E, Scholz B, Voigt N, Muller FU, Thomas D, Katus HA, Schmidt C (2018) Atrial fibrillation and heart failure-associated remodeling of two-pore-domain potassium (K2P) channels in murine disease models: focus on TASK-1. Basic Res Cardiol 113:27. https://doi.org/10.1007/s00395-018-0687-9

    Article  CAS  PubMed  Google Scholar 

  105. Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bunemann M, Leitner MG, Oliver D (2014) Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun 5:5540

    CAS  PubMed  Google Scholar 

  106. Zuzarte M, Heusser K, Renigunta V, Schlichthorl G, Rinne S, Wischmeyer E, Daut J, Schwappach B, Preisig-Muller R (2009) Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14-3-3 proteins. J Physiol 587:929–952

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Inoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Channelopathies: from mutation to diseases in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, M., Matsuoka, H., Harada, K. et al. TASK channels: channelopathies, trafficking, and receptor-mediated inhibition. Pflugers Arch - Eur J Physiol 472, 911–922 (2020). https://doi.org/10.1007/s00424-020-02403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02403-3

Keywords

Navigation