Skip to main content

Advertisement

Log in

Glucose transporters in the kidney in health and disease

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ackermann TF, Boini KM, Volkl H, Bhandaru M, Bareiss PM, Just L, Vallon V, Amann K, Kuhl D, Feng Y, Hammes HP, Lang F (2009) SGK1-sensitive renal tubular glucose reabsorption in diabetes. Am J Physiol Ren Physiol 296:F859–F866. https://doi.org/10.1152/ajprenal.90238.2008

    Article  CAS  Google Scholar 

  2. Ali T, Khan I, Simpson W, Prescott G, Townend J, Smith W, Macleod A (2007) Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol 18:1292–1298. https://doi.org/10.1681/ASN.2006070756

    Article  CAS  PubMed  Google Scholar 

  3. Ash SR, Cuppage FE (1970) Shift toward anaerobic glycolysis in the regenerating rat kidney. Am J Pathol 60:385–402

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Balen D, Ljubojevic M, Breljak D, Brzica H, Zlender V, Koepsell H, Sabolic I (2008) Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Phys Cell Phys 295:C475–C489. https://doi.org/10.1152/ajpcell.00180.2008

    Article  CAS  Google Scholar 

  5. Bankir L, Yang B (2012) New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism. Kidney Int 81:1179–1198. https://doi.org/10.1038/ki.2012.67

    Article  CAS  PubMed  Google Scholar 

  6. Barfuss DW, Schafer JA (1981) Differences in active and passive glucose transport along the proximal nephron. Am J Phys 241:F322–F332

    CAS  Google Scholar 

  7. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, Broedl UC (2014) Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2:369–384. https://doi.org/10.1016/S2213-8587(13)70208-0

    Article  CAS  PubMed  Google Scholar 

  8. Basile DP, Anderson MD, Sutton TA (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353. https://doi.org/10.1002/cphy.c110041

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blantz RC, Peterson OW, Gushwa L, Tucker BJ (1982) Effect of modest hyperglycemia on tubuloglomerular feedback activity. Kidney Int Suppl 12:S206–S212

    CAS  PubMed  Google Scholar 

  10. van Bommel EJ, Muskiet MH, van Baar MJB (2019) Dapagliflozin reduces measured GFR by reducing renal efferent arteriolar resistance in type 2 diabetes. Diabetes American Diabetes Association 79th scientific sessions:S-157 (abstract)

  11. Bonventre JV, Yang L (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121:4210–4221. https://doi.org/10.1172/JCI45161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burch HB, Narins RG, Chu C, Fagioli S, Choi S, McCarthy W, Lowry OH (1978) Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. Am J Phys 235:F246–F253. https://doi.org/10.1152/ajprenal.1978.235.3.F246

    Article  CAS  Google Scholar 

  13. Cannon CP, Perkovic V, Agarwal R, Baldassarre J, Bakris G, Charytan DM, de ZD, Edwards R, Greene T, Heerspink HJL, Jardine MJ, Levin A, Li JW, Neal B, Pollock C, Wheeler DC, Zhang H, Zinman B, Mahaffey KW (2019) Evaluating the effects of canagliflozin on cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease according to baseline HbA1c, including those with HbA1c <7%: results from the CREDENCE trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.119.044359

  14. Cefalo CMA, Cinti F, Moffa S, Impronta F, Sorice GP, Mezza T, Pontecorvi A, Giaccari A (2019) Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives. Cardiovasc Diabetol 18:20. https://doi.org/10.1186/s12933-019-0828-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Busse LW (2017) Novel therapies for acute kidney injury. Kidney Int Rep 2:785–799. https://doi.org/10.1016/j.ekir.2017.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Williams S, Ho S, Loraine H, Hagan D, Whaley JM, Feder JN (2010) Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther 1:57–92. https://doi.org/10.1007/s13300-010-0006-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatte M (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597. https://doi.org/10.1161/CIRCULATIONAHA.113.005081

    Article  CAS  PubMed  Google Scholar 

  18. Chin E, Zhou J, Bondy C (1993) Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. J Clin Invest 91:1810-1815. doi:https://doi.org/10.1172/JCI116392 [doi]

  19. Chin E, Zamah AM, Landau D, Gronbcek H, Flyvbjerg A, LeRoith D, Bondy CA (1997) Changes in facilitative glucose transporter messenger ribonucleic acid levels in the diabetic rat kidney. Endocrinology 138:1267–1275

    CAS  PubMed  Google Scholar 

  20. Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi JI, Nakanishi T, Tamai I (2014) SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos 35:391–404. https://doi.org/10.1002/bdd.1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coady MJ, El TA, Santer R, Bissonnette P, Sasseville LJ, Calado J, Lussier Y, Dumayne C, Bichet DG, Lapointe JY (2017) MAP17 is a necessary activator of renal Na+/glucose cotransporter SGLT2. J Am Soc Nephrol 28:85–93. https://doi.org/10.1681/ASN.2015111282

    Article  CAS  PubMed  Google Scholar 

  22. Conjard A, Martin M, Guitton J, Baverel G, Ferrier B (2001) Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline. Biochem J 360:371–377

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dekkers CCJ, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJL (2018) Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 20:1988–1993. https://doi.org/10.1111/dom.13301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dominguez JH, Camp K, Maianu L, Garvey WT (1992) Glucose transporters of rat proximal tubule: differential expression and subcellular distribution. Am J Phys 262:F807–F812

    CAS  Google Scholar 

  25. Dominguez JH, Camp K, Maianu L, Feister H, Garvey WT (1994) Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am J Phys 266:F283–F290

    CAS  Google Scholar 

  26. Drewnowsk KD, Craig MR, Digiovanni SR, McCarty JM, Moorman AF, Lamers WH, Schoolwerth AC (2002) PEPCK mRNA localization in proximal tubule and gene regulation during metabolic acidosis. J Physiol Pharmacol 53:3–20

    CAS  PubMed  Google Scholar 

  27. Eickhoff MK, Dekkers CCJ, Kramers BJ, Laverman GD, Frimodt-Moller M, Jorgensen NR, Faber J, Danser AHJ, Gansevoort RT, Rossing P, Persson F, Heerspink HJL (2019) Effects of dapagliflozin on volume status when added to renin-angiotensin system inhibitors. J Clin Med:8. https://doi.org/10.3390/jcm8060779

  28. Eskandari S, Wright EM, Loo DD (2005) Kinetics of the reverse mode of the Na+/glucose cotransporter. J Membr Biol 204:23–32. https://doi.org/10.1007/s00232-005-0743-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814. https://doi.org/10.1126/science.1160406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. FARBER SJ, BERGER EY, EARLE DP (1951) Effect of diabetes and insulin on the maximum capacity of the renal tubules to reabsorb glucose. J Clin Invest 30:125–129. https://doi.org/10.1172/JCI102424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farsijani NM, Liu Q, Kobayashi H, Davidoff O, Sha F, Fandrey J, Ikizler TA, O’Connor PM, Haase VH (2016) Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. J Clin Invest 126:1425–1437. https://doi.org/10.1172/JCI74997

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fattah H, Shigeoka A, Huang W, Patel R, Kasimsetty S, Singh P, McKay DB, Vallon V (2018) Diverse gene expression patterns of renal transporters in AKI. J Am Soc Nephrol 29:1045 (Abstract)

    Google Scholar 

  33. Ferrannini E (2017) Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metab 26:27–38. https://doi.org/10.1016/j.cmet.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  34. Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, Broedl UC, Woerle HJ (2014) Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 124:499-508. doi:72227 https://doi.org/10.1172/JCI72227

  35. Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39:1108–1114. https://doi.org/10.2337/dc16-0330

    Article  PubMed  Google Scholar 

  36. Fiorentino M, Grandaliano G, Gesualdo L, Castellano G (2018) Acute kidney injury to chronic kidney disease transition. Contrib Nephrol 193:45–54. https://doi.org/10.1159/000484962

    Article  CAS  PubMed  Google Scholar 

  37. Foote C, Perkovic V, Neal B (2012) Effects of SGLT2 inhibitors on cardiovascular outcomes. Diab Vasc Dis Res 9:117–123. https://doi.org/10.1177/1479164112441190

    Article  PubMed  Google Scholar 

  38. Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira-Souza M, Bordin S, Machado UF (2008) Na(+)-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology 149:717–724. https://doi.org/10.1210/en.2007-1088

    Article  CAS  PubMed  Google Scholar 

  39. Freitas HS, Schaan BD, David-Silva A, Sabino-Silva R, Okamoto MM, Alves-Wagner AB, Mori RC, Machado UF (2009) SLC2A2 gene expression in kidney of diabetic rats is regulated by HNF-1alpha and HNF-3beta. Mol Cell Endocrinol 305:63–70. https://doi.org/10.1016/j.mce.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  40. Fu Y, Gerasimova M, Mayoux E, Masuda T, Vallon V (2014) SGLT2 inhibitor empagliflozin increases renal NHE3 phosphorylation in diabetic Akita mice: possible implications for the prevention of glomerular hyperfiltration. Diabetes 63(supplement 1):A132

    Google Scholar 

  41. Fu Y, Breljak D, Onishi A, Batz F, Patel R, Huang W, Song P, Freeman B, Mayoux E, Koepsell H, Anzai N, Nigam SK, Sabolic I, Vallon V (2018) The organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Ren Physiol 315:F386–F394. https://doi.org/10.1152/ajprenal.00503.2017

    Article  CAS  Google Scholar 

  42. Fukuzawa T, Fukazawa M, Ueda O, Shimada H, Kito A, Kakefuda M, Kawase Y, Wada NA, Goto C, Fukushima N, Jishage K, Honda K, King GL, Kawabe Y (2013) SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose. PLoS One 8:e56681. https://doi.org/10.1371/journal.pone.0056681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89

    CAS  PubMed  Google Scholar 

  44. Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S (2014) Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 103:373–381. https://doi.org/10.1016/j.diabres.2013.12.052

    Article  CAS  PubMed  Google Scholar 

  45. Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, Hugo C (2014) The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol Ren Physiol 307:F317–F325. https://doi.org/10.1152/ajprenal.00145.2014

    Article  CAS  Google Scholar 

  46. Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 27:136-142. doi:DME2894 [pii];https://doi.org/10.1111/j.1464-5491.2009.02894.x [doi]

  47. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24:382–391

    CAS  PubMed  Google Scholar 

  48. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559. https://doi.org/10.1056/NEJMoa0802743

    Article  CAS  PubMed  Google Scholar 

  49. Ghezzi C, Wright EM (2012) Regulation of the human Na+ dependent glucose cotransporter hSGLT2. Am J Physiol Cell Physiol 303:C348-C354. doi:ajpcell.00115.2012 [pii];https://doi.org/10.1152/ajpcell.00115.2012 [doi]

  50. Ghezzi C, Gorraitz E, Hirayama BA, Loo DD, Grempler R, Mayoux E, Wright EM (2014) Fingerprints of hSGLT5 sugar and cation selectivity. Am J Phys Cell Phys 306:C864–C870. https://doi.org/10.1152/ajpcell.00027.2014

    Article  CAS  Google Scholar 

  51. Ghezzi C, Hirayama BA, Gorraitz E, Loo DD, Liang Y, Wright EM (2014) SGLT2 inhibitors act from the extracellular surface of the cell membrane. Phys Rep 2:pii: e12058. https://doi.org/10.14814/phy2.12058

  52. Gilbert RE, Thorpe KE (2019) Acute kidney injury with sodium-glucose co-transporter-2 inhibitors: a meta-analysis of cardiovascular outcome trials. Diabetes Obes Metab 21:1996–2000. https://doi.org/10.1111/dom.13754

    Article  CAS  PubMed  Google Scholar 

  53. Goestemeyer AK, Marks J, Srai SK, Debnam ES, Unwin RJ (2007) GLUT2 protein at the rat proximal tubule brush border membrane correlates with protein kinase C (PKC)-betal and plasma glucose concentration. Diabetologia 50:2209–2217. https://doi.org/10.1007/s00125-007-0778-x

    Article  CAS  PubMed  Google Scholar 

  54. Gorboulev V, Schurmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H (2012) Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61:187–196. https://doi.org/10.2337/db11-1029

    Article  CAS  PubMed  Google Scholar 

  55. Grempler R, Augustin R, Froehner S, Hildebrandt T, Simon E, Mark M, Eickelmann P (2012) Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. FEBS Lett 586:248–253. https://doi.org/10.1016/j.febslet.2011.12.027

    Article  CAS  PubMed  Google Scholar 

  56. Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111

    CAS  PubMed  Google Scholar 

  57. Guyton AC (1991) Blood pressure control—special role of the kidneys and body fluids. Science 252:1813–1816

    CAS  PubMed  Google Scholar 

  58. Hallow KM, Gebremichael Y, Helmlinger G, Vallon V (2017) Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis. Am J Physiol Ren Physiol 312:F819–F835. https://doi.org/10.1152/ajprenal.00497.2016

    Article  CAS  Google Scholar 

  59. Han HJ, Lee YJ, Park SH, Lee JH, Taub M (2005) High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. Am J Physiol Ren Physiol 288:F988–F996. https://doi.org/10.1152/ajprenal.00327.2004

    Article  CAS  Google Scholar 

  60. Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40:123–137. https://doi.org/10.1111/1440-1681.12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hansen HH, Jelsing J, Hansen CF, Hansen G, Vrang N, Mark M, Klein T, Mayoux E (2014) The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves beta-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat. J Pharmacol Exp Ther 350:657–664. https://doi.org/10.1124/jpet.114.213454

    Article  CAS  PubMed  Google Scholar 

  62. Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381. https://doi.org/10.1038/330379a0

    Article  CAS  PubMed  Google Scholar 

  63. Heerspink HJ, Desai M, Jardine M, Balis D, Meininger G, Perkovic V (2018) Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol 28:368–375. https://doi.org/10.1681/ASN.2016030278

    Article  Google Scholar 

  64. Heise T, Seewaldt-Becker E, Macha S, Hantel S, Pinnetti S, Seman L, Woerle HJ (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks' treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab 15:613–621. https://doi.org/10.1111/dom.12073

    Article  CAS  PubMed  Google Scholar 

  65. Heyman SN, Rosen S, Brezis M (1997) The renal medulla: life at the edge of anoxia. Blood Purif 15:232–242. https://doi.org/10.1159/000170341

    Article  CAS  PubMed  Google Scholar 

  66. Hinden L, Udi S, Drori A, Gammal A, Nemirovski A, Hadar R, Baraghithy S, Permyakova A, Geron M, Cohen M, Tsytkin-Kirschenzweig S, Riahi Y, Leibowitz G, Nahmias Y, Priel A, Tam J (2018) Modulation of renal GLUT2 by the cannabinoid-1 receptor: implications for the treatment of diabetic nephropathy. J Am Soc Nephrol 29:434–448. https://doi.org/10.1681/ASN.2017040371

    Article  CAS  PubMed  Google Scholar 

  67. Holtkamp FA, D. dZ, Thomas MC, Cooper ME, de Graeff PA, Hillege HJ, Parving HH, Brenner BM, Shahinfar S, Lambers Heerspink HJ (2011) An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int 80:282–287. https://doi.org/10.1038/ki.2011.79

    Article  CAS  PubMed  Google Scholar 

  68. Huang W, Patel R, Onishi A, Crespo-Masip M, Soleimani M, Freeman B, Vallon V (2018) Tubular NHE3 is a determinant of the acute natriuretic and chronic blood pressure lowering effect of the SGLT2 inhibitor empagliflozin. FASEB J 32, supplement no 1:620.617

  69. Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM (2011) Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Phys Cell Phys 300:C14–C21. https://doi.org/10.1152/ajpcell.00388.2010

    Article  CAS  Google Scholar 

  70. Inoue BH, dos SL, Pessoa TD, Antonio EL, Pacheco BP, Savignano FA, Carraro-Lacroix LR, Tucci PJ, Malnic G, Girardi AC (2012) Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure. Am J Phys Regul Integr Comp Phys 302:R166–R174. https://doi.org/10.1152/ajpregu.00127.2011

    Article  CAS  Google Scholar 

  71. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, Schmoor C, Ohneberg K, Johansen OE, George JT, Hantel S, Bluhmki E, Lachin JM (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363. https://doi.org/10.2337/dc17-1096

    Article  CAS  PubMed  Google Scholar 

  72. Jensen PK, Kristensen KS, Rasch R, Persson AEG (1988) Decreased sensitivity of the tubuloglomerular feedback mechanism in experimental diabetic rats. In: Persson AEG, Boberg U (eds) The juxtaglomerular apparatus. Elsevier, Amsterdam, pp 333–338

    Google Scholar 

  73. Johnston PA, Rennke H, Levinsky NG (1984) Recovery of proximal tubular function from ischemic injury. Am J Phys 246:F159–F166

    CAS  Google Scholar 

  74. Jurczak MJ, Lee HY, Birkenfeld AL, Jornayvaz FR, Frederick DW, Pongratz RL, Zhao X, Moeckel GW, Samuel VT, Whaley JM, Shulman GI, Kibbey RG (2011) SGLT2 deletion improves glucose homeostasis and preserves pancreatic beta-cell function. Diabetes 60:890–898. https://doi.org/10.2337/db10-1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kamran M, Peterson RG, Dominguez JH (1997) Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J Am Soc Nephrol 8:943–948

    CAS  PubMed  Google Scholar 

  76. Kanai Y, Lee WS, You G, Brown D, Hediger MA (1994) The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest, 10.1172/JCI116972 93:397–404

  77. Kanbay M, Jensen T, Solak Y, Le M, Roncal-Jimenez C, Rivard C, Lanaspa MA, Nakagawa T, Johnson RJ (2016) Uric acid in metabolic syndrome: from an innocent bystander to a central player. Eur J Intern Med 29:3–8. https://doi.org/10.1016/j.ejim.2015.11.026

    Article  CAS  PubMed  Google Scholar 

  78. Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A, Furtado RHM, Kuder J, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Bonaca MP, Ruff CT, Desai AS, Goto S, Johansson PA, Gause-Nilsson I, Johanson P, Langkilde AM, Raz I, Sabatine MS, Wiviott SD (2019) Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139:2528–2536. https://doi.org/10.1161/CIRCULATIONAHA.119.040130

    Article  CAS  PubMed  Google Scholar 

  79. Kellett GL, Brot-Laroche E, Mace OJ, Leturque A (2008) Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 28:35–54. https://doi.org/10.1146/annurev.nutr.28.061807.155518

    Article  CAS  PubMed  Google Scholar 

  80. Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK (2015) Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care 38:316–322. https://doi.org/10.2337/dc14-0920

    Article  PubMed  Google Scholar 

  81. Klein KL, Wang MS, Torikai S, Davidson WD, Kurokawa K (1981) Substrate oxidation by isolated single nephron segments of the rat. Kidney Int 20:29–35

    CAS  PubMed  Google Scholar 

  82. Kohan DE, Fioretto P, Johnsson K, Parikh S, Ptaszynska A, Ying L (2016) The effect of dapagliflozin on renal function in patients with type 2 diabetes. J Nephrol 29:391–400. https://doi.org/10.1007/s40620-016-0261-1

    Article  CAS  PubMed  Google Scholar 

  83. Komers R, Lindsley JN, Oyama TT, Allison KM, Anderson S (2000) Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes. Am J Physiol Ren Physiol 279:F573–F583

    CAS  Google Scholar 

  84. Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L, Pfister M (2009) Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther 85:520–526. https://doi.org/10.1038/clpt.2008.251

    Article  CAS  PubMed  Google Scholar 

  85. Kowalski GM, Bruce CR (2014) The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am J Physiol Endocrinol Metab 307:E859–E871. https://doi.org/10.1152/ajpendo.00165.2014

    Article  CAS  PubMed  Google Scholar 

  86. Kuhre RE, Ghiasi SM, Adriaenssens AE, Wewer Albrechtsen NJ, Andersen DB, Aivazidis A, Chen L, Mandrup-Poulsen T, Orskov C, Gribble FM, Reimann F, Wierup N, Tyrberg B, Holst JJ (2019) No direct effect of SGLT2 activity on glucagon secretion. Diabetologia 62:1011–1023. https://doi.org/10.1007/s00125-019-4849-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lambers Heerspink HJ, de ZD, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862. https://doi.org/10.1111/dom.12127

    Article  CAS  PubMed  Google Scholar 

  88. Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J Am Soc Nephrol 27:3356–3367. https://doi.org/10.1681/ASN.2015020177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lang F, Gorlach A, Vallon V (2009) Targeting SGK1 in diabetes. Expert Opin Ther Targets 13:1303–1311. https://doi.org/10.1517/14728220903260807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Layton AT, Vallon V (2018) SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. Am J Physiol Ren Physiol 314:F969–F984. https://doi.org/10.1152/ajprenal.00551.2017

    Article  CAS  Google Scholar 

  91. Layton AT, Vallon V, Edwards A (2015) Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Ren Physiol 308:F1343–F1357. https://doi.org/10.1152/ajprenal.00007.2015

    Article  CAS  Google Scholar 

  92. Layton AT, Vallon V, Edwards A (2016) Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. Am J Physiol Ren Physiol 310:F1269–F1283. https://doi.org/10.1152/ajprenal.00543.2015

    Article  CAS  Google Scholar 

  93. Lee WS, Kanai Y, Wells RG, Hediger MA (1994) The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. J Biol Chem 269:12032–12039

    CAS  PubMed  Google Scholar 

  94. Li Z, Agrawal V, Ramratnam M, Sharma RK, D’Auria S, Sincoular A, Jakubiak M, Music ML, Kutschke WJ, Huang XN, Gifford L, Ahmad F (2019) Cardiac sodium-glucose co-transporter 1 (SGLT1) is a novel mediator of ischemia/reperfusion injury. Cardiovasc Res. https://doi.org/10.1093/cvr/cvz037

  95. Linden KC, DeHaan CL, Zhang Y, Glowacka S, Cox AJ, Kelly DJ, Rogers S (2006) Renal expression and localization of the facilitative glucose transporters GLUT1 and GLUT12 in animal models of hypertension and diabetic nephropathy. Am J Physiol Ren Physiol 290:F205–F213. https://doi.org/10.1152/ajprenal.00237.2004

    Article  CAS  Google Scholar 

  96. Liu R, Carretero OA, Ren Y, Garvin JL (2005) Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int 67:1837–1843. https://doi.org/10.1111/j.1523-1755.2005.00282.x

    Article  CAS  PubMed  Google Scholar 

  97. Lynch MR, Tran MT, Parikh SM (2018) PGC1alpha in the kidney. Am J Physiol Ren Physiol 314:F1–F8. https://doi.org/10.1152/ajprenal.00263.2017

    Article  CAS  Google Scholar 

  98. Lytvyn Y, Skrtic M, Yang GK, Yip PM, Perkins BA, Cherney DZ (2015) Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Ren Physiol 308:F77–F83. https://doi.org/10.1152/ajprenal.00555.2014

    Article  CAS  Google Scholar 

  99. Lytvyn Y, Bjornstad P, Katz A, Singh SK, Godoy LC, Chung LT, Vinovskis CL, Pyle L, Roussel R, Perkins BA, Cherney D (2019) SGLT2 inhibition increases serum copeptin in young adults with type 1 diabetes. Diabetes Metab. https://doi.org/10.1016/j.diabet.2019.11.006

  100. Macdonald FR, Peel JE, Jones HB, Mayers RM, Westgate L, Whaley JM, Poucher SM (2010) The novel sodium glucose transporter 2 inhibitor dapagliflozin sustains pancreatic function and preserves islet morphology in obese, diabetic rats. Diabetes Obes Metab 12:1004–1012. https://doi.org/10.1111/j.1463-1326.2010.01291.x

    Article  CAS  PubMed  Google Scholar 

  101. Madunic IV, Breljak D, Karaica D, Koepsell H, Sabolic I (2017) Expression profiling and immunolocalization of Na(+)-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats. Pflugers Arch 469:1545–1565. https://doi.org/10.1007/s00424-017-2056-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG (2009) Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 52:691–697. https://doi.org/10.1007/s00125-009-1268-0

    Article  CAS  PubMed  Google Scholar 

  103. Malek M, Nematbakhsh M (2015) Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 4:20-27. doi:https://doi.org/10.12861/jrip.2015.06 [doi]

  104. Marks J, Carvou NJ, Debnam ES, Srai SK, Unwin RJ (2003) Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol 553:137–145. https://doi.org/10.1113/jphysiol.2003.046268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Martin MG, Turk E, Lostao MP, Kerner C, Wright EM (1996) Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet 12:216-220. doi:https://doi.org/10.1038/ng0296-216 [doi]

  106. Masuda T, Watanabe Y, Fukuda K, Watanabe M, Onishi A, Ohara K, Imai T, Koepsell H, Muto S, Vallon V, Nagata D (2018) Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. Am J Physiol Ren Physiol 315:F653–F664. https://doi.org/10.1152/ajprenal.00143.2018

    Article  CAS  Google Scholar 

  107. Masuda T, Muto S, Fukuda K, Watanabe M, Ohara K, Koepsell H, Vallon V, Nagata D (2020) Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep 8:e14360. doi:https://doi.org/10.14814/phy2.14360

  108. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  109. Merovci A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, Xiong J, Perez Z, Norton L, Abdul-Ghani MA, DeFronzo RA (2014) Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 124:509–514. https://doi.org/10.1172/JCI70704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mogensen CE (1971) Maximum tubular reabsorption capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand J Clin Lab Invest 28:101–109

    CAS  PubMed  Google Scholar 

  111. Molitoris BA, Kinne R (1987) Ischemia induces surface membrane dysfunction. Mechanism of altered Na+-dependent glucose transport. J Clin Invest 80:647–654. https://doi.org/10.1172/JCI113117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Monami M, Nardini C, Mannucci E (2014) Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 16:457–466. https://doi.org/10.1111/dom.12244

    Article  CAS  PubMed  Google Scholar 

  113. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 34:121–138. https://doi.org/10.1016/j.mam.2012.07.001

    Article  CAS  Google Scholar 

  114. Neal B, Perkovic V, Mahaffey KW, de ZD, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR (2017) Canagliflozin and |Abetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925

    Article  CAS  PubMed  Google Scholar 

  115. Neill O, Fasching A, Pihl L, Patinha D, Franzen S, Palm F (2015) Acute SGLT inhibition normalizes oxygen tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Ren Physiol 309:F227–F234. https://doi.org/10.1152/ajprenal.00689.2014

    Article  CAS  Google Scholar 

  116. Nespoux J, Vallon V (2018) SGLT2 inhibition and kidney protection. Clin Sci (Lond) 132:1329–1339. https://doi.org/10.1042/CS20171298

    Article  CAS  Google Scholar 

  117. Nespoux J, Vallon V (2019) Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens. https://doi.org/10.1097/MNH.0000000000000584

  118. Nespoux J, Patel R, Zhang H, Huang W, Freeman B, Sanders PW, Kim YC, Vallon V (2020) Gene knockout of the Na-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Ren Physiol. https://doi.org/10.1152/ajprenal.00607.2019

    Article  Google Scholar 

  119. Nespoux J, Patel R, Hudkins KL, Huang W, Freeman B, Kim Y, Koepsell H, Alpers CE, Vallon V (2019) Gene deletion of the Na-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Ren Physiol 316:F1201–F1210

    CAS  Google Scholar 

  120. Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott C, Bompoint S, Levin A, Jardine MJ (2019) SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 7:845–854. https://doi.org/10.1016/S2213-8587(19)30256-6

    Article  CAS  PubMed  Google Scholar 

  121. Norton L, Shannon CE, Fourcaudot M, Hu C, Wang N, Ren W, Song J, Abdul-Ghani M, DeFronzo RA, Ren J, Jia W (2017) Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes Metab 19:1322–1326. https://doi.org/10.1111/dom.13003

    Article  CAS  PubMed  Google Scholar 

  122. Novikov A, Fu Y, Huang W, Freeman B, Patel R, van GC, Koepsell H, Busslinger M, Onishi A, Nespoux J, Vallon V (2019) SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Ren Physiol 316:F173–F185. https://doi.org/10.1152/ajprenal.00462.2018

    Article  CAS  Google Scholar 

  123. Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, Patel R, Kim YC, Nespoux J, Freeman B, Soleimani M, Thomson SC, Sharma K, Vallon V (2019) Effect of renal tubule-specific knockdown of the Na(+)/H(+) exchanger NHE3 in Akita diabetic mice. Am J Physiol Ren Physiol 317:F419–F434. https://doi.org/10.1152/ajprenal.00497.2018

    Article  CAS  Google Scholar 

  124. Osorio H, Bautista R, Rios A, Franco M, Santamaria J, Escalante B (2009) Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats. Diabetes Res Clin Pract 86:e46–e49. https://doi.org/10.1016/j.diabres.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  125. Pascual JM, Wang D, Lecumberri B, Yang H, Mao X, Yang R, De Vivo DC (2004) GLUT1 deficiency and other glucose transporter diseases. Eur J Endocrinol 150:627–633

    CAS  PubMed  Google Scholar 

  126. Perkins BA, Cherney DZ, Partridge H, Soleymanlou N, Tschirhart H, Zinman B, Fagan NM, Kaspers S, Woerle HJ, Broedl UC, Johansen OE (2014) Sodium-glucose Cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 37:1480–1483. https://doi.org/10.2337/dc13-2338

    Article  PubMed  Google Scholar 

  127. Perkovic V, Jardine M, Vijapurkar U, Meininger G (2015) Renal effects of canagliflozin in type 2 diabetes mellitus. Curr Med Res Opin 31:2219–2231. https://doi.org/10.1185/03007995.2015.1092128

    Article  CAS  PubMed  Google Scholar 

  128. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de ZD, Greene T, Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner BM, Mahaffey KW (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380:2295–2306. https://doi.org/10.1056/NEJMoa1811744

    Article  CAS  PubMed  Google Scholar 

  129. Pessoa TD, Campos LC, Carraro-Lacroix L, Girardi AC, Malnic G (2014) Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol 25:2028–2039. https://doi.org/10.1681/ASN.2013060588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Petrykiv S, Sjostrom CD, Greasley PJ, Xu J, Persson F, Heerspink HJL (2017) Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function. Clin J Am Soc Nephrol 12:751–759. https://doi.org/10.2215/CJN.10180916

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pfaff IL, Vallon V (2002) Protein kinase C beta isoenzymes in diabetic kidneys and their relation to nephroprotective actions of the ACE inhibitor lisinopril. Kidney Blood Press Res 25:329–340

    CAS  PubMed  Google Scholar 

  132. Pfaff IL, Wagner HJ, Vallon V (1999) Immunolocalization of protein kinase C isoenzymes alpha, beta1 and betaII in rat kidney. J Am Soc Nephrol 10:1861–1873

    CAS  PubMed  Google Scholar 

  133. Phillips AO, Steadman R, Morrisey K, Williams JD (1997) Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells. Am J Pathol 150:1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Powell DR, DaCosta CM, Gay J, Ding ZM, Smith M, Greer J, Doree D, Jeter-Jones S, Mseeh F, Rodriguez LA, Harris A, Buhring L, Platt KA, Vogel P, Brommage R, Shadoan MK, Sands AT, Zambrowicz B (2013) Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol Endocrinol Metab 304:E117–E130. https://doi.org/10.1152/ajpendo.00439.2012

    Article  CAS  PubMed  Google Scholar 

  135. Powell DR, DaCosta CM, Smith M, Doree D, Harris A, Buhring L, Heydorn W, Nouraldeen A, Xiong W, Yalamanchili P, Mseeh F, Wilson A, Shadoan M, Zambrowicz B, Ding ZM (2014) Effect of LX4211 on glucose homeostasis and body composition in preclinical models. J Pharmacol Exp Ther 350:232–242. https://doi.org/10.1124/jpet.114.214304

    Article  CAS  PubMed  Google Scholar 

  136. Pruijm M, Milani B, Pivin E, Podhajska A, Vogt B, Stuber M, Burnier M (2018) Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int 93:932–940. https://doi.org/10.1016/j.kint.2017.10.020

    Article  PubMed  Google Scholar 

  137. Qiu H, Novikov A, Vallon V (2017) Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab Res Rev 33:5. https://doi.org/10.1002/dmrr.2886

    Article  Google Scholar 

  138. Quamme GA, Freeman HJ (1987) Evidence for a high-affinity sodium-dependent D-glucose transport system in the kidney. Am J Phys 253:F151–F157

    CAS  Google Scholar 

  139. Quinn PG, Yeagley D (2005) Insulin regulation of PEPCK gene expression: a model for rapid and reversible modulation. Curr Drug Targets Immune Endocr Metabol Disord 5:423–437

    CAS  PubMed  Google Scholar 

  140. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54:3427–3434

    CAS  PubMed  Google Scholar 

  141. Rieg T, Vallon V (2018) Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:2079–2086. https://doi.org/10.1007/s00125-018-4654-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Ren Physiol 306:F188–F193. https://doi.org/10.1152/ajprenal.00518.2013

    Article  CAS  Google Scholar 

  143. Rosen S, Epstein FH, Brezis M (1992) Determinants of intrarenal oxygenation: factors in acute renal failure. Ren Fail 14:321–325

    CAS  PubMed  Google Scholar 

  144. Sabolic I, Vrhovac I, Eror DB, Gerasimova M, Rose M, Breljak D, Ljubojevic M, Brzica H, Sebastiani A, Thal SC, Sauvant C, Kipp H, Vallon V, Koepsell H (2012) Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol 302:C1174–C1188. https://doi.org/10.1152/ajpcell.00450.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sala-Rabanal M, Hirayama BA, Ghezzi C, Liu J, Huang SC, Kepe V, Koepsell H, Yu A, Powell DR, Thorens B, Wright EM, Barrio JR (2016) Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. J Physiol 594:4425–4438. https://doi.org/10.1113/JP271904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sano M, Takei M, Shiraishi Y, Suzuki Y (2016) Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J Clin Med Res 8:844–847. https://doi.org/10.14740/jocmr2760w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141. https://doi.org/10.2215/CJN.04010609

    Article  CAS  PubMed  Google Scholar 

  148. Santer R, Schneppenheim R, Suter D, Schaub J, Steinmann B (1998) Fanconi-Bickel syndrome—the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr 157:783–797

    CAS  PubMed  Google Scholar 

  149. Santer R, Groth S, Kinner M, Dombrowski A, Berry GT, Brodehl J, Leonard JV, Moses S, Norgren S, Skovby F, Schneppenheim R, Steinmann B, Schaub J (2002) The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet 110:21–29. https://doi.org/10.1007/s00439-001-0638-6

    Article  CAS  PubMed  Google Scholar 

  150. Saponaro C, Muhlemann M, Acosta-Montalvo A, Piron A, Gmyr V, Delalleau N, Moerman E, Thevenet J, Pasquetti G, Coddeville A, Cnop M, Kerr-Conte J, Staels B, Pattou F, Bonner C (2020) Inter-individual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes. https://doi.org/10.2337/db19-0888

  151. Sasaki M, Sasako T, Kubota N, Sakurai Y, Takamoto I, Kubota T, Inagi R, Seki G, Goto M, Ueki K, Nangaku M, Jomori T, Kadowaki T (2017) Dual regulation of gluconeogenesis by insulin and glucose in the proximal tubules of the kidney. Diabetes 66:2339–2350. https://doi.org/10.2337/db16-1602

    Article  CAS  PubMed  Google Scholar 

  152. Satirapoj B, Korkiatpitak P, Supasyndh O (2019) Effect of sodium-glucose cotransporter 2 inhibitor on proximal tubular function and injury in patients with type 2 diabetes: a randomized controlled trial. Clin Kidney J 12:326–332. https://doi.org/10.1093/ckj/sfy122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schmidt C, Hocherl K, Schweda F, Kurtz A, Bucher M (2007) Regulation of renal sodium transporters during severe inflammation. J Am Soc Nephrol 18:1072–1083. https://doi.org/10.1681/ASN.2006050454

    Article  CAS  PubMed  Google Scholar 

  154. Seidner G, Alvarez MG, Yeh JI, O’Driscoll KR, Klepper J, Stump TS, Wang D, Spinner NB, Birnbaum MJ, De Vivo DC (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 18:188–191. https://doi.org/10.1038/ng0298-188

    Article  CAS  PubMed  Google Scholar 

  155. Sha S, Devineni D, Ghosh A, Polidori D, Chien S, Wexler D, Shalayda K, Demarest K, Rothenberg P (2011) Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes Obes Metab 13:669–672. https://doi.org/10.1111/j.1463-1326.2011.01406.x

    Article  CAS  PubMed  Google Scholar 

  156. Shanley PF, Brezis M, Spokes K, Silva P, Epstein FH, Rosen S (1986) Transport-dependent cell injury in the S3 segment of the proximal tubule. Kidney Int 29:1033–1037

    CAS  PubMed  Google Scholar 

  157. Shepard BD, Pluznick JL (2017) Saving the sweetness: renal glucose handling in health and disease. Am J Physiol Ren Physiol 313:F55–F61. https://doi.org/10.1152/ajprenal.00046.2017

    Article  CAS  Google Scholar 

  158. Sims H, Smith KH, Bramlage P, Minguet J (2018) Sotagliflozin: a dual sodium-glucose co-transporter-1 and -2 inhibitor for the management of type 1 and type 2 diabetes mellitus. Diabet Med 35:1037–1048. https://doi.org/10.1111/dme.13645

    Article  CAS  PubMed  Google Scholar 

  159. Solini A, Rossi C, Mazzanti CM, Proietti A, Koepsell H, Ferrannini E (2017) Sodium-glucose co-transporter (SGLT)2 and SGLT1 renal expression in patients with type 2 diabetes. Diabetes Obes Metab 19:1289–1294. https://doi.org/10.1111/dom.12970

    Article  CAS  PubMed  Google Scholar 

  160. Song P, Onishi A, Koepsell H, Vallon V (2016) Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 20:1109–1125. https://doi.org/10.1517/14728222.2016.1168808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Song P, Huang W, Onishi A, Patel R, Kim Y, van Ginkel C, Fu Y, Freeman B, Koepsell H, Thomson SC, Liu R, Vallon V (2019) Knockout of Na-glucose-cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase-1 in macula densa and glomerular hyperfiltration. Am J Physiol Ren Physiol 317:F207–F217

    CAS  Google Scholar 

  162. Sotak M, Marks J, Unwin RJ (2017) Putative tissue location and function of the SLC5 family member SGLT3. Exp Physiol 102:5–13. https://doi.org/10.1113/EP086042

    Article  CAS  PubMed  Google Scholar 

  163. Suga T, Kikuchi O, Kobayashi M, Matsui S, Yokota-Hashimoto H, Wada E, Kohno D, Sasaki T, Takeuchi K, Kakizaki S, Yamada M, Kitamura T (2019) SGLT1 in pancreatic alpha cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol Metab 19:1–12. https://doi.org/10.1016/j.molmet.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  164. Sugawara-Yokoo M, Suzuki T, Matsuzaki T, Naruse T, Takata K (1999) Presence of fructose transporter GLUT5 in the S3 proximal tubules in the rat kidney. Kidney Int 56:1022-1028. doi:S0085-2538(15)46380-X [pii];https://doi.org/10.1046/j.1523-1755.1999.00635.x [doi]

  165. Swe MT, Pongchaidecha A, Chatsudthipong V, Chattipakorn N, Lungkaphin A (2019) Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions. J Cell Physiol 234:8134-8151. doi:https://doi.org/10.1002/jcp.27598 [doi]

  166. Szablewski L (2017) Distribution of glucose transporters in renal diseases. J Biomed Sci 24:64. https://doi.org/10.1186/s12929-017-0371-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tazawa S, Yamato T, Fujikura H, Hiratochi M, Itoh F, Tomae M, Takemura Y, Maruyama H, Sugiyama T, Wakamatsu A, Isogai T, Isaji M (2005) SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci 76:1039–1050. https://doi.org/10.1016/j.lfs.2004.10.016

    Article  CAS  PubMed  Google Scholar 

  168. Thomson SC, Vallon V (2019) Renal effects of sodium-glucose co-transporter inhibitors. Am J Cardiol 124 Suppl 1:S28-S35. https://doi.org/10.1016/j.amjcard.2019.10.027

  169. Thomson SC, Deng A, Komine N, Hammes JS, Blantz RC, Gabbai FB (2004) Early diabetes as a model for testing the regulation of juxtaglomerular NOS I. Am J Physiol Ren Physiol 287:F732–F738. https://doi.org/10.1152/ajprenal.00340.2003

    Article  CAS  Google Scholar 

  170. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P (2012) Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Phys Regul Integr Comp Phys 302:R75–R83. https://doi.org/10.1152/ajpregu.00357.2011

    Article  CAS  Google Scholar 

  171. Thorens B, Lodish HF, Brown D (1990) Differential localization of two glucose transporter isoforms in rat kidney. Am J Phys 259:C286–C294

    CAS  Google Scholar 

  172. Tiwari S, Riazi S, Ecelbarger CA (2007) Insulin’s impact on renal sodium transport and blood pressure in health, obesity, and diabetes. Am J Physiol Ren Physiol 293:F974–F984. https://doi.org/10.1152/ajprenal.00149.2007

    Article  CAS  Google Scholar 

  173. Tolins JP, Shultz PJ, Raij L, Brown DM, Mauer SM (1993) Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO. Am J Phys 265:F886–F895

    CAS  Google Scholar 

  174. Turner RJ, Moran A (1982) Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am J Phys 242:F406–F414

    CAS  Google Scholar 

  175. Uchida S, Endou H (1988) Substrate specificity to maintain cellular ATP along the mouse nephron. Am J Phys 255:F977–F983

    CAS  Google Scholar 

  176. Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, Tokuyama H, Wakino S, Itoh H (2018) High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci Rep 8:6791. https://doi.org/10.1038/s41598-018-25054-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Vaduganathan M, Januzzi JL, Jr. (2019) Preventing and treating heart failure with sodium-glucose co-transporter 2 inhibitors. Am J Cardiol 124 Suppl 1:S20-S27. https://doi.org/10.1016/j.amjcard.2019.10.026

  178. Vallon V (2011) Molecular determinants of renal glucose transport. Am J Phys Cell Phys 300:C6–C8. https://doi.org/10.1152/ajpcell.00444.2010

    Article  CAS  Google Scholar 

  179. Vallon V (2011) The proximal tubule in the pathophysiology of the diabetic kidney. Am J Phys Regul Integr Comp Phys 300:R1009–R1022. https://doi.org/10.1152/ajpregu.00809.2010

    Article  CAS  Google Scholar 

  180. Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255–270

    CAS  PubMed  Google Scholar 

  181. Vallon V (2016) Tubular transport in acute kidney injury: relevance for diagnosis, prognosis and intervention. Nephron 134:160–166. https://doi.org/10.1159/000446448

    Article  PubMed  Google Scholar 

  182. Vallon V, Osswald H (1994) Dipyridamole prevents diabetes-induced alterations of kidney function in rats. Naunyn Schmiedeberg's Arch Pharmacol 349:217–222

    CAS  Google Scholar 

  183. Vallon V, Thomson S (1995) Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback. Am J Phys 269:F892–F899

    CAS  Google Scholar 

  184. Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74:351–375. https://doi.org/10.1146/annurev-physiol-020911-153333

    Article  CAS  PubMed  Google Scholar 

  185. Vallon V, Thomson SC (2017) Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60:215–225. https://doi.org/10.1007/s00125-016-4157-3

    Article  CAS  PubMed  Google Scholar 

  186. Vallon V, Blantz RC, Thomson S (1995) Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am J Phys 269:F876–F883

    CAS  Google Scholar 

  187. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576

    CAS  PubMed  Google Scholar 

  188. Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Volkl H, Warth R (2001) Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12:2003–2011

    CAS  PubMed  Google Scholar 

  189. Vallon V, Traynor T, Barajas L, Huang YG, Briggs JP, Schnermann J (2001) Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice. J Am Soc Nephrol 12:1599–1606

    CAS  PubMed  Google Scholar 

  190. Vallon V, Blantz RC, Thomson S (2003) Glomerular hyperfiltration and the salt paradox in early type 1 diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol 14:530–537

    PubMed  Google Scholar 

  191. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F (2005) KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci U S A 102:17864–17869. https://doi.org/10.1073/pnas.0505860102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Vallon V, Muhlbauer B, Osswald H (2006) Adenosine and kidney function. Physiol Rev 86:901–940

    CAS  PubMed  Google Scholar 

  193. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22:104–112

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Ren Physiol 304:F156–F167. https://doi.org/10.1152/ajprenal.00409.2012

    Article  CAS  Google Scholar 

  195. Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Ren Physiol 306:F194–F204. https://doi.org/10.1152/ajprenal.00520.2013

    Article  CAS  Google Scholar 

  196. Vallon V, Broer S, Nigam SK (2020) Renal handling of organic solutes. In: Yu AS, Chertow G, Luyckx V, Marsden PA, Skorecki K, Taal MW (eds) Brenner & Rector’s the kidney, 11th edn. Elsevier, Philadelphia, pp 218–246

    Google Scholar 

  197. Vrhovac I, Balen ED, Klessen D, Burger C, Breljak D, Kraus O, Radovic N, Jadrijevic S, Aleksic I, Walles T, Sauvant C, Sabolic I, Koepsell H (2015) Localizations of Na-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898. https://doi.org/10.1007/s00424-014-1619-7

    Article  CAS  PubMed  Google Scholar 

  198. Wang XX, Levi J, Luo Y, Myakala K, Herman-Edelstein M, Qiu L, Wang D, Peng Y, Grenz A, Lucia S, Dobrinskikh E, D’Agati VD, Koepsell H, Kopp JB, Rosenberg A, Levi M (2017) SGLT2 expression is increased in human diabetic nephropathy: SGLT2 inhibition decreases renal lipid accumulation, inflammation and the development of nephropathy in diabetic mice. J Biol Chem 292:5335–5348. https://doi.org/10.1074/jbc.M117.779520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von EM, Mattheus M, Johansen OE, Woerle HJ, Broedl UC, Zinman B (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334. https://doi.org/10.1056/NEJMoa1515920

    Article  CAS  PubMed  Google Scholar 

  200. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, Woerle HJ, Broedl UC, von EM, Zinman B (2018) Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137:119–129. https://doi.org/10.1161/CIRCULATIONAHA.117.028268

    Article  CAS  PubMed  Google Scholar 

  201. Weinberg JM, Molitoris BA (2009) Illuminating mitochondrial function and dysfunction using multiphoton technology. J Am Soc Nephrol 20:1164–1166. https://doi.org/10.1681/ASN.2009040419

    Article  CAS  PubMed  Google Scholar 

  202. Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA (1992) Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Phys 263:F459–F465

    CAS  Google Scholar 

  203. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A 89:11993–11997

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9. https://doi.org/10.1079/BJN2002763

    Article  CAS  PubMed  Google Scholar 

  205. Wright EM (2001) Renal Na(+)-glucose cotransporters. Am J Physiol Ren Physiol 280:F10–F18

    CAS  Google Scholar 

  206. Wright EM (2013) Glucose transport families SLC5 and SLC50. Mol Asp Med 34:183–196. https://doi.org/10.1016/j.mam.2012.11.002

    Article  CAS  Google Scholar 

  207. Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch 447:510–518. https://doi.org/10.1007/s00424-003-1063-6

    Article  CAS  PubMed  Google Scholar 

  208. Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733-794. doi:91/2/733 [pii];https://doi.org/10.1152/physrev.00055.2009 [doi]

  209. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, Figueroa K, Wajs E, Usiskin K, Meininger G (2013) Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 15:463–473. https://doi.org/10.1111/dom.12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. You G, Lee WS, Barros EJ, Kanai Y, Huo TL, Khawaja S, Wells RG, Nigam SK, Hediger MA (1995) Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem 270:29365–29371

    CAS  PubMed  Google Scholar 

  211. Zapata-Morales JR, Galicia-Cruz OG, Franco M, Martinez YM (2014) Hypoxia-inducible factor-1alpha (HIF-1alpha) protein diminishes sodium glucose transport 1 (SGLT1) and SGLT2 protein expression in renal epithelial tubular cells (LLC-PK1) under hypoxia. J Biol Chem 289:346–357. https://doi.org/10.1074/jbc.M113.526814

    Article  CAS  PubMed  Google Scholar 

  212. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39. https://doi.org/10.1016/S0140-6736(18)32590-X

    Article  CAS  PubMed  Google Scholar 

  213. Zhang Y, Nakano D, Guan Y, Hitomi H, Uemura A, Masaki T, Kobara H, Sugaya T, Nishiyama A (2018) A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int 94:524–535. https://doi.org/10.1016/j.kint.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  214. Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R (2019) Macula densa SGLT1-NOS1-TGF pathway—a new mechanism for glomerular hyperfiltration during hyperglycemia. J Am Soc Nephrol 30:578–593

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Zierler K (1999) Whole body glucose metabolism. Am J Phys 276:E409–E426

    CAS  Google Scholar 

  216. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author was supported by NIH grants R01DK112042, R01DK106102, R01HL142814, RF1AG061296, the UAB/UCSD O’Brien Center of Acute Kidney Injury NIH-P30DK079337, and the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Vallon.

Ethics declarations

Competing interests

Over the past 36 months, VV has served as a consultant and received honoraria from Astra-Zeneca, Bayer, Boehringer Ingelheim, Eli Lilly, Janssen Pharmaceutical, Merck, and Retrophin, and received grant support for investigator-initiated research from Astra-Zeneca, Bayer, Boehringer Ingelheim, Fresenius, Janssen, and Novo-Nordisk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Glucose Transporters in Health and Disease in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallon, V. Glucose transporters in the kidney in health and disease. Pflugers Arch - Eur J Physiol 472, 1345–1370 (2020). https://doi.org/10.1007/s00424-020-02361-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02361-w

Keywords

Navigation