Skip to main content

Advertisement

Log in

Renin cells with defective Gsα/cAMP signaling contribute to renal endothelial damage

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

A Commentary to this article was published on 08 August 2019

Abstract

Synthesis of renin in renal renin-producing cells (RPCs) is controlled via the intracellular messenger cAMP. Interference with cAMP-mediated signaling by inducible knockout of Gs-alpha (Gsα) in RPCs of adult mice resulted in a complex adverse kidney phenotype. Therein, glomerular endothelial damage was most striking. In this study, we investigated whether Gsα knockout leads to a loss of RPCs, which itself may contribute to the endothelial injury. We compared the kidney phenotype of three RPC-specific conditional mouse lines during continuous induction of recombination. Mice expressing red fluorescent reporter protein tdTomato (tdT) in RPCs served as controls. tdT was also expressed in RPCs of the other two strains used, namely with RPC-specific Gsα knockout (Gsα mice) or with RPC-specific diphtheria toxin A expression (DTA mice, in which the RPCs should be diminished). Using immunohistological analysis, we found that RPCs decreased by 82% in the kidneys of Gsα mice as compared with controls. However, the number of tdT-positive cells was similar in the two strains, demonstrating that after Gsα knockout, the RPCs persist as renin-negative descendants. In contrast, both renin-positive and tdT-labeled cells decreased by 80% in DTA mice suggesting effective RPC ablation. Only Gsα mice displayed dysregulated endothelial cell marker expression indicating glomerular endothelial damage. In addition, a robust induction of genes involved in tissue remodelling with microvascular damage was identified in tdT-labeled RPCs isolated from Gsα mice. We concluded that Gsα/renin double-negative RPC progeny essentially contributes for the development of glomerular endothelial damage in our Gsα-deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown SL, Lundgren CH, Nordt T, Fujii S (1994) Stimulation of migration of human aortic smooth muscle cells by vitronectin: implications for atherosclerosis. Cardiovasc Res 28:1815–1820. https://doi.org/10.1093/cvr/28.12.1815

  2. Cantin M, Araujo-Nascimento MD, Benchimol S, Desormeaux Y (1977) Metaplasia of smooth muscle cells into juxtaglomerular cells in the juxtaglomerular apparatus, arteries, and arterioles of the ischemic (endocrine) kidney. An ultrastructural-cytochemical and autoradiographic study. Am J Pathol 87:581–602

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Castrop H, Hocherl K, Kurtz A, Schweda F, Todorov V, Wagner C (2010) Physiology of kidney renin. Physiol Rev 90:607–673. https://doi.org/10.1152/physrev.00011.2009

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Kim SM, Oppermann M, Faulhaber-Walter R, Huang Y, Mizel D, Chen M, Lopez ML, Weinstein LS, Gomez RA, Briggs JP, Schnermann J (2007) Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsalpha in juxtaglomerular cells. Am J Physiol Renal Physiol 292:F27–F37. https://doi.org/10.1152/ajprenal.00193.2006

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Yang S, Yao W, Zhu H, Xu X, Meng G, Zhang W (2014) Prostacyclin analogue beraprost inhibits cardiac fibroblast proliferation depending on prostacyclin receptor activation through a TGF beta-Smad signal pathway. PLoS One 9:e98483. https://doi.org/10.1371/journal.pone.0098483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen YM, Wu KD, Tsai TJ, Hsieh BS (1999) Pentoxifylline inhibits PDGF-induced proliferation of and TGF-beta-stimulated collagen synthesis by vascular smooth muscle cells. J Mol Cell Cardiol 31:773–783. https://doi.org/10.1006/jmcc.1998.0910

    Article  CAS  PubMed  Google Scholar 

  7. Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-beta). Int J Biochem Cell Biol 30:293-298. https://doi.org/10.1016/S1357-2725(97)00128-3

  8. Desch M, Hackmayer G, Todorov VT (2012) Identification of ATF2 as a transcriptional regulator of renin gene. Biol Chem 393:93–100. https://doi.org/10.1515/BC-2011-157

    Article  CAS  PubMed  Google Scholar 

  9. Desch M, Harlander S, Neubauer B, Gerl M, Germain S, Castrop H, Todorov VT (2011) cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo. Pflugers Arch 461:567–577. https://doi.org/10.1007/s00424-011-0956-z

    Article  CAS  PubMed  Google Scholar 

  10. Desch M, Schubert T, Schreiber A, Mayer S, Friedrich B, Artunc F, Todorov VT (2010) PPARgamma-dependent regulation of adenylate cyclase 6 amplifies the stimulatory effect of cAMP on renin gene expression. Mol Endocrinol 24:2139–2151. https://doi.org/10.1210/me.2010-0134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136. https://doi.org/10.1056/NEJMoa0707330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friis UG, Madsen K, Stubbe J, Hansen PB, Svenningsen P, Bie P, Skott O, Jensen BL (2013) Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch 465:25–37. https://doi.org/10.1007/s00424-012-1126-7

    Article  CAS  PubMed  Google Scholar 

  13. Fuentes E, Badimon L, Caballero J, Padro T, Vilahur G, Alarcon M, Perez P, Palomo I (2014) Protective mechanisms of adenosine 5′-monophosphate in platelet activation and thrombus formation. Thromb Haemost 111:491–507. https://doi.org/10.1160/TH13-05-0386

    Article  CAS  PubMed  Google Scholar 

  14. Gewin L, Zent R (2012) How does TGF-beta mediate tubulointerstitial fibrosis? Semin Nephrol 32:228–235. https://doi.org/10.1016/j.semnephrol.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomez RA, Lopez ML (2017) Plasticity of renin cells in the kidney vasculature. Curr Hypertens Rep 19:14. https://doi.org/10.1007/s11906-017-0711-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomez RA, Pentz ES, Jin X, Cordaillat M, Sequeira Lopez ML (2009) CBP and p300 are essential for renin cell identity and morphological integrity of the kidney. Am J Physiol Heart Circ Physiol 296:H1255–H1262. https://doi.org/10.1152/ajpheart.01266.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gomez RA, Sequeira-Lopez MLS (2018) Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol 14:231–245. https://doi.org/10.1038/nrneph.2017.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hickmann L, Steglich A, Gerlach M, Al-Mekhlafi M, Sradnick J, Lachmann P, Sequeira-Lopez MLS, Gomez RA, Hohenstein B, Hugo C, Todorov VT (2017) Persistent and inducible neogenesis repopulates progenitor renin lineage cells in the kidney. Kidney Int 92:1419–1432. https://doi.org/10.1016/j.kint.2017.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holgate (2000) Epithelial damage and response. Clin Exp Allergy 30:37-41. https://doi.org/10.1046/j.1365-2222.2000.00095.x

  20. Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS (2015) Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr Med Chem 22:2858–2870. https://doi.org/10.2174/0929867322666150625095407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ichimura K, Stan RV, Kurihara H, Sakai T (2008) Glomerular endothelial cells form diaphragms during development and pathologic conditions. J Am Soc Nephrol 19:1463–1471. https://doi.org/10.1681/ASN.2007101138

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ignatiadis N, Klaus B, Zaugg JB, Huber W (2016) Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat Methods 13:577–580. https://doi.org/10.1038/nmeth.3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Insel PA, Murray F, Yokoyama U, Romano S, Yun H, Brown L, Snead A, Lu D, Aroonsakool N (2012) cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol 166:447–456. https://doi.org/10.1111/j.1476-5381.2012.01847.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Itani H, Liu X, Sarsour EH, Goswami PC, Born E, Keen HL, Sigmund CD (2009) Regulation of renin gene expression by oxidative stress. Hypertension 53:1070–1076. https://doi.org/10.1161/HYPERTENSIONAHA.109.130633

    Article  CAS  PubMed  Google Scholar 

  25. Kessel F, Steglich A, Tschongov T, Gembardt F, Ruhnke L, Stumpf J, Behrendt R, Cohrs C, Kopaliani I, Todorov V, Gerlach M, Hugo C (2019) New automatic quantification method of immunofluorescence and histochemistry in whole histological sections. Cell Signal 62:109335. https://doi.org/10.1016/j.cellsig.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  26. Keuschnigg J, Henttinen T, Auvinen K, Karikoski M, Salmi M, Jalkanen S (2009) The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood 114:478–484. https://doi.org/10.1182/blood-2008-11-188763

    Article  CAS  PubMed  Google Scholar 

  27. Klar J, Sandner P, Muller MW, Kurtz A (2002) Cyclic AMP stimulates renin gene transcription in juxtaglomerular cells. Pflugers Arch 444:335–344. https://doi.org/10.1007/s00424-002-0818-9

    Article  CAS  PubMed  Google Scholar 

  28. Komai T, Okamura T, Inoue M, Yamamoto K, Fujio K (2018) Reevaluation of pluripotent cytokine TGF-beta3 in immunity. Int J Mol Sci 19:2261. https://doi.org/10.3390/ijms19082261

  29. Kurtz A (2017) Endocrine functions of the renal interstitium. Pflugers Arch 469:869–876. https://doi.org/10.1007/s00424-017-2008-9

    Article  CAS  PubMed  Google Scholar 

  30. Lachmann P, Hickmann L, Steglich A, Al-Mekhlafi M, Gerlach M, Jetschin N, Jahn S, Hamann B, Wnuk M, Madsen K, Djonov V, Chen M, Weinstein LS, Hohenstein B, Hugo CPM, Todorov VT (2017) Interference with Gsalpha-coupled receptor signaling in renin-producing cells leads to renal endothelial damage. J Am Soc Nephrol 28:3479–3489. https://doi.org/10.1681/ASN.2017020173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32:3532–3534. https://doi.org/10.1093/bioinformatics/btw413

    Article  CAS  PubMed  Google Scholar 

  32. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  33. Lin EE, Pentz ES, Sequeira-Lopez ML, Gomez RA (2015) Aldo-keto reductase 1b7, a novel marker for renin cells, is regulated by cyclic AMP signaling. Am J Physiol Regul Integr Comp Physiol 309:R576–R584. https://doi.org/10.1152/ajpregu.00222.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayer S, Roeser M, Lachmann P, Ishii S, Suh JM, Harlander S, Desch M, Brunssen C, Morawietz H, Tsai SY, Tsai MJ, Hohenstein B, Hugo C, Todorov VT (2012) Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression. J Biol Chem 287:24483–24491. https://doi.org/10.1074/jbc.M111.329474

  36. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338. https://doi.org/10.1038/nrneph.2016.48

    Article  CAS  PubMed  Google Scholar 

  37. Mohamed AA, Tan SH, Mikhalkevich N, Ponniah S, Vasioukhin V, Bieberich CJ, Sesterhenn IA, Dobi A, Srivastava S, Sreenath TL (2010) Ets family protein, erg expression in developing and adult mouse tissues by a highly specific monoclonal antibody. J Cancer 1:197–208.

  38. Mozer AB, Whittemore SR, Benton RL (2010) Spinal microvascular expression of PV-1 is associated with inflammation, perivascular astrocyte loss, and diminished EC glucose transport potential in acute SCI. Curr Neurovasc Res 7:238–250. https://doi.org/10.2174/156720210792231840

  39. Neubauer B, Machura K, Chen M, Weinstein LS, Oppermann M, Sequeira-Lopez ML, Gomez RA, Schnermann J, Castrop H, Kurtz A, Wagner C (2009) Development of vascular renin expression in the kidney critically depends on the cyclic AMP pathway. Am J Physiol Renal Physiol 296:F1006–F1012. https://doi.org/10.1152/ajprenal.90448.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nishi Y, Namikoshi T, Sasaki T, Tokura T, Nagasu H, Nakanishi H, Kozuka Y, Kashihara N (2010) Histopathological manifestations of membranoproliferative glomerulonephritis and glomerular expression of plasmalemmal vesicle-associated protein-1 in a patient with polycythemia vera. Clin Nephrol 74:393–398. https://doi.org/10.2379/CNX06407

  41. Pentz ES, Cordaillat M, Carretero OA, Tucker AE, Sequeira Lopez ML, Gomez RA (2012) Histone acetyl transferases CBP and p300 are necessary for maintenance of renin cell identity and transformation of smooth muscle cells to the renin phenotype. Am J Physiol Heart Circ Physiol 302:H2545–H2552. https://doi.org/10.1152/ajpheart.00782.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perbellini F, Watson SA, Bardi I, Terracciano CM (2018) Heterocellularity and cellular cross-talk in the cardiovascular system. Front Cardiovasc Med 5:143. https://doi.org/10.3389/fcvm.2018.00143

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pham HT, Huang W, Han C, Li J, Xie Q, Wei J, Xu X, Lai Z, Huang X, Huang R, Wen Q (2017) Effects of Averrhoa carambola L. (Oxalidaceae) juice mediated on hyperglycemia, hyperlipidemia, and its influence on regulatory protein expression in the injured kidneys of streptozotocin-induced diabetic mice. Am J Transl Res 9:36–49.

  44. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098. https://doi.org/10.1038/nmeth.2639

    Article  CAS  PubMed  Google Scholar 

  45. Pintavorn P, Ballermann BJ (1997) TGF-beta and the endothelium during immune injury. Kidney Int 51:1401–1412. https://doi.org/10.1038/ki.1997.192

  46. Pippin JW, Sparks MA, Glenn ST, Buitrago S, Coffman TM, Duffield JS, Gross KW, Shankland SJ (2013) Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am J Pathol 183:542–557. https://doi.org/10.1016/j.ajpath.2013.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. R Developement Core Team (2008) R: a language and environment for statistical computing R Foundation for statistical computing, Vienna

  48. Roberts AB, Kim SJ, Noma T, Glick AB, Lafyatis R, Lechleider R, Jakowlew SB, Geiser A, O’Reilly MA, Danielpour D et al (1991) Multiple forms of TGF-beta: distinct promoters and differential expression. CIBA Found Symp 157:7–28

  49. RStudio Team (2015) RStudio: Integrated Development Environment for R RStudio Inc., Boston

  50. Ruhnke L, Sradnick J, Al-Mekhlafi M, Gerlach M, Gembardt F, Hohenstein B, Todorov VT, Hugo C (2018) Progenitor renin lineage cells are not involved in the regeneration of glomerular endothelial cells during experimental renal thrombotic microangiopathy. PLoS One 13:e0196752. https://doi.org/10.1371/journal.pone.0196752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarwar M, Samuel CS, Bathgate RA, Stewart DR, Summers RJ (2016) Enhanced serelaxin signalling in co-cultures of human primary endothelial and smooth muscle cells. Br J Pharmacol 173:484–496. https://doi.org/10.1111/bph.13371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  53. Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A (2014) Ageing and microvasculature. Vascular cell 6:19. https://doi.org/10.1186/2045-824X-6-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sequeira Lopez ML, Gomez RA (2011) Development of the renal arterioles. J Am Soc Nephrol 22:2156–2165. https://doi.org/10.1681/ASN.2011080818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sequeira Lopez MLS, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728. https://doi.org/10.1016/S1534-5807(04)00134-0

    Article  PubMed  Google Scholar 

  56. Staffel J, Valletta D, Federlein A, Ehm K, Volkmann R, Fuchsl AM, Witzgall R, Kuhn M, Schweda F (2017) Natriuretic peptide receptor guanylyl cyclase-a in podocytes is renoprotective but dispensable for physiologic renal function. J Am Soc Nephrol 28:260–277. https://doi.org/10.1681/ASN.2015070731

    Article  CAS  PubMed  Google Scholar 

  57. Starke C, Betz H, Hickmann L, Lachmann P, Neubauer B, Kopp JB, Sequeira-Lopez ML, Gomez RA, Hohenstein B, Todorov VT, Hugo CP (2015) Renin lineage cells repopulate the glomerular mesangium after injury. J Am Soc Nephrol 26:48–54. https://doi.org/10.1681/ASN.2014030265

    Article  CAS  PubMed  Google Scholar 

  58. Stefanska A, Peault B, Mullins JJ (2013) Renal pericytes: multifunctional cells of the kidneys. Pflugers Arch 465:767–773. https://doi.org/10.1007/s00424-013-1263-7

    Article  CAS  PubMed  Google Scholar 

  59. Sweeney M, Foldes G (2018) It takes two: endothelial-perivascular cell cross-talk in vascular development and disease. Front Cardiovasc Med 5:154. https://doi.org/10.3389/fcvm.2018.00154

    Article  PubMed  PubMed Central  Google Scholar 

  60. Todorov VT, Volkl S, Friedrich J, Kunz-Schughart LA, Hehlgans T, Vermeulen L, Haegeman G, Schmitz ML, Kurtz A (2005) Role of CREB1 and NF {kappa}B-p65 in the down-regulation of renin gene expression by tumor necrosis factor {alpha}. J Biol Chem 280:24356–24362. https://doi.org/10.1074/jbc.M502968200

  61. Verrecchia F, Mauviel A, Farge D (2006) Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev 5:563–569. https://doi.org/10.1016/j.autrev.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  62. Weng L, Wang W, Su X, Huang Y, Su L, Liu M, Sun Y, Yang B, Zhou H (2015) The effect of cAMP-PKA activation on TGF-beta1-induced profibrotic signaling. Cell Physiol Biochem 36:1911–1927. https://doi.org/10.1159/000430160

    Article  CAS  PubMed  Google Scholar 

  63. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881. https://doi.org/10.1093/bioinformatics/btq057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xi PP, Xu YY, Chen XL, Fan YP, Wu JH (2016) Role of the prostaglandin E2 receptor agonists in TGF-beta1-induced mesangial cell damage. Bioscience reports 36. doi:https://doi.org/10.1042/BSR20160038

  65. Yamamoto I, Horita S, Takahashi T, Tanabe K, Fuchinoue S, Teraoka S, Hattori M, Yamaguchi Y (2007) Glomerular expression of plasmalemmal vesicle-associated protein-1 in patients with transplant glomerulopathy. Am J Transplant 7:1954–1960. https://doi.org/10.1111/j.1600-6143.2007.01876.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The competent technical assistance of Kathleen Fischer, Anika Lüdemann, and Nicole Bunk is gratefully acknowledged. We are greatly indebted to Lee S. Weinstein, Min Chen, and Jürgen Schnermann from NIH-NIDDK for providing transgenic mice. We thank the Light Microscopy Facility (Core Facility of the CMCB Technology Platform at Technical University, Dresden), the CFCI (Core Facility Cellular Imaging), the Institute of Clinical Chemistry (University Hospital Carl Gustav Carus, Dresden), and the Flow Cytometry Core Facility (Center for Molecular and Cellular Bioengineering, Technical University Dresden) for their support.

Data availability statement

The data generated or analyzed during this study are available from the corresponding author upon reasonable request.

Funding

This work was supported by Deutsche Forschungsgemeinschaft, grants TO 679/2-1, TO 679/3-1, HU 600/6-1, HU 600/8-1, and GE 2845/1-1, and the Graduate Academy of TU Dresden.

Author information

Authors and Affiliations

Authors

Contributions

AS designed and performed experiments/microscopy, analyzed and interpreted data, and wrote and revised the manuscript; FK analyzed data and edited the manuscript; LH performed experiments, interpreted data, and edited the manuscript; MG performed microscopy and edited the manuscript; PL performed the experiments; FG edited the manuscript; ML analyzed the data; AD analyzed the data; AF and FS performed the experiments; CH interpreted data and edited the manuscript; VT conceived and designed the study, interpreted the data, and wrote and revised the manuscript.

Corresponding author

Correspondence to Vladimir T. Todorov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were performed in accordance with the Federal Law on the Use of Experimental Animals in Germany and were approved by the local authorities (Landesdirektion Sachsen). Animal experiments were consistent with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (NIH Pub. No. 85-23, Revised 2011). This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Commentary to this article is available online at https://doi.org/10.1007/s00424-019-02302-2

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steglich, A., Kessel, F., Hickmann, L. et al. Renin cells with defective Gsα/cAMP signaling contribute to renal endothelial damage. Pflugers Arch - Eur J Physiol 471, 1205–1217 (2019). https://doi.org/10.1007/s00424-019-02298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-019-02298-9

Keywords

Navigation