Skip to main content

Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting

Abstract

Repeated bouts of endurance exercise promotes numerous biochemical adaptations in skeletal muscle fibers resulting in a muscle phenotype that is protected against a variety of homeostatic challenges; these exercise-induced changes in muscle phenotype are often referred to as “exercise preconditioning.” Importantly, exercise preconditioning provides protection against several threats to skeletal muscle health including cancer chemotherapy (e.g., doxorubicin) and prolonged muscle inactivity. This review summarizes our current understanding of the mechanisms responsible for exercise-induced protection of skeletal muscle fibers against both doxorubicin-induced muscle wasting and a unique form of inactivity-induced muscle atrophy (i.e., ventilator-induced diaphragm atrophy). Specifically, the first section of this article will highlight the potential mechanisms responsible for exercise-induced protection of skeletal muscle fibers against doxorubicin-induced fiber atrophy. The second segment will discuss the biochemical changes that are responsible for endurance exercise-mediated protection of diaphragm muscle against ventilator-induced diaphragm wasting. In each section, we highlight gaps in our knowledge in hopes of stimulating future research in this evolving field of investigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adhikari NK, Fowler RA, Bhagwanjee S, Rubenfeld GD (2010) Critical care and the global burden of critical illness in adults. Lancet 376:1339–1346. https://doi.org/10.1016/S0140-6736(10)60446-1

    Article  PubMed  Google Scholar 

  2. Agten A, Maes K, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G (2011) N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit Care Med 39:777–782. https://doi.org/10.1097/CCM.0b013e318206cca9

    Article  CAS  PubMed  Google Scholar 

  3. Agten A, Maes K, Thomas D, Cielen N, Van Hees HW, Dekhuijzen RP, Decramer M, Gayan-Ramirez G (2012) Bortezomib partially protects the rat diaphragm from ventilator-induced diaphragm dysfunction. Crit Care Med 40:2449–2455. https://doi.org/10.1097/CCM.0b013e3182553a88

    Article  CAS  PubMed  Google Scholar 

  4. Anzueto A, Peters JI, Tobin MJ, de los Santos R, Seidenfeld JJ, Moore G, Cox WJ, Coalson JJ (1997) Effects of prolonged controlled mechanical ventilation on diaphragmatic function in healthy adult baboons. Crit Care Med 25:1187–1190

    Article  CAS  PubMed  Google Scholar 

  5. Beduneau G, Pham T, Schortgen F, Piquilloud L, Zogheib E, Jonas M, Grelon F, Runge I, Nicolas T, Grange S, Barberet G, Guitard PG, Frat JP, Constan A, Chretien JM, Mancebo J, Mercat A, Richard JM, Brochard L, Group WS, the RNdd (2017) Epidemiology of weaning outcome according to a new definition. The WIND Study. Am J Respir Crit Care Med 195:772–783. https://doi.org/10.1164/rccm.201602-0320OC

    Article  PubMed  Google Scholar 

  6. Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, Deruisseau KC, Deering M, Yimlamai T, Powers SK (2004) Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 170:1179–1184. https://doi.org/10.1164/rccm.200407-939OC

    Article  PubMed  Google Scholar 

  7. Bruells CS, Smuder AJ, Reiss LK, Hudson MB, Nelson WB, Wiggs MP, Sollanek KJ, Rossaint R, Uhlig S, Powers SK (2013) Negative pressure ventilation and positive pressure ventilation promote comparable levels of ventilator-induced diaphragmatic dysfunction in rats. Anesthesiology 119:652–662. https://doi.org/10.1097/ALN.0b013e31829b3692

    Article  PubMed  Google Scholar 

  8. Camera DM, Smiles WJ, Hawley JA (2016) Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 98:131–143. https://doi.org/10.1016/j.freeradbiomed.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  9. Capdevila X, Lopez S, Bernard N, Rabischong E, Ramonatxo M, Martinazzo G, Prefaut C (2003) Effects of controlled mechanical ventilation on respiratory muscle contractile properties in rabbits. Intensive Care Med 29:103–110

    Article  PubMed  Google Scholar 

  10. Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, Xiong Y (2011) Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12:534–541. https://doi.org/10.1038/embor.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Criswell D, Powers S, Dodd S, Lawler J, Edwards W, Renshler K, Grinton S (1993) High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc 25:1135–1140

    Article  CAS  PubMed  Google Scholar 

  12. Criswell DS, Powers SK, Herb RA, Dodd SL (1997) Mechanism of specific force deficit in the senescent rat diaphragm. Respir Physiol 107:149–155

    Article  CAS  PubMed  Google Scholar 

  13. Criswell DS, Shanely RA, Betters JJ, McKenzie MJ, Sellman JE, Van Gammeren DL, Powers SK (2003) Cumulative effects of aging and mechanical ventilation on in vitro diaphragm function. Chest 124:2302–2308

    Article  PubMed  Google Scholar 

  14. Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6. https://doi.org/10.1186/2046-2395-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Damuth E, Mitchell JA, Bartock JL, Roberts BW, Trzeciak S (2015) Long-term survival of critically ill patients treated with prolonged mechanical ventilation: a systematic review and meta-analysis. Lancet Respir Med 3:544–553. https://doi.org/10.1016/S2213-2600(15)00150-2

    Article  PubMed  Google Scholar 

  16. Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067

    CAS  PubMed  Google Scholar 

  17. Dolinsky VW (2017) The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction. Biol Chem 398:955–974. https://doi.org/10.1515/hsz-2016-0316

    Article  CAS  PubMed  Google Scholar 

  18. Doroshow JH (1983) Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res 43:4543–4551

    CAS  PubMed  Google Scholar 

  19. Dudek J (2017) Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5:90. https://doi.org/10.3389/fcell.2017.00090

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ertunc M, Sara Y, Korkusuz P, Onur R (2009) Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure. Pharmacology 84:240–248. https://doi.org/10.1159/000241723

    Article  CAS  PubMed  Google Scholar 

  21. Eskandar N, Apostolakos MJ (2007) Weaning from mechanical ventilation. Crit Care Clin 23:263–274, x. https://doi.org/10.1016/j.ccc.2006.12.002

    Article  PubMed  Google Scholar 

  22. Falk DJ, Deruisseau KC, Van Gammeren DL, Deering MA, Kavazis AN, Powers SK (2006) Mechanical ventilation promotes redox status alterations in the diaphragm. J Appl Physiol 101:1017–1024. https://doi.org/10.1152/japplphysiol.00104.2006

    Article  CAS  PubMed  Google Scholar 

  23. Falk DJ, Kavazis AN, Whidden MA, Smuder AJ, McClung JM, Hudson MB, Powers SK (2011) Mechanical ventilation-induced oxidative stress in the diaphragm: role of heme oxygenase-1. Chest 139:816–824. https://doi.org/10.1378/chest.09-2787

    Article  CAS  PubMed  Google Scholar 

  24. Febbraio MA (2017) Exercise metabolism in 2016: health benefits of exercise - more than meets the eye. Nat Rev Endocrinol 13:72–74. https://doi.org/10.1038/nrendo.2016.218

    Article  PubMed  Google Scholar 

  25. Gayan-Ramirez G, Testelmans D, Maes K, Racz GZ, Cadot P, Zador E, Wuytack F, Decramer M (2005) Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects. Crit Care Med 33:2804–2809

    Article  PubMed  Google Scholar 

  26. Gilliam LA, St Clair DK (2011) Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal 15:2543–2563. https://doi.org/10.1089/ars.2011.3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gilliam LA, Moylan JS, Patterson EW, Smith JD, Wilson AS, Rabbani Z, Reid MB (2012) Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Phys Cell Phys 302:C195–C202. https://doi.org/10.1152/ajpcell.00217.2011

    Article  CAS  Google Scholar 

  28. Gilliam LA, Lark DS, Reese LR, Torres MJ, Ryan TE, Lin CT, Cathey BL, Neufer PD (2016) Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction. Am J Phys Endocrinol Metab 311:E293–E301. https://doi.org/10.1152/ajpendo.00540.2015

    Article  Google Scholar 

  29. Giudice J, Taylor JM (2017) Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol 34:49–55. https://doi.org/10.1016/j.coph.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, Rittayamai N, Lanys A, Tomlinson G, Singh JM, Bolz SS, Rubenfeld GD, Kavanagh BP, Brochard LJ, Ferguson ND (2015) Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med 192:1080–1088. https://doi.org/10.1164/rccm.201503-0620OC

    Article  PubMed  Google Scholar 

  31. Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E (2018) Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxidative Med Cell Longev 2018:1–15. https://doi.org/10.1155/2018/7582730

    Article  CAS  Google Scholar 

  32. Grinton S, Powers SK, Lawler J, Criswell D, Dodd S, Edwards W (1992) Endurance training-induced increases in expiratory muscle oxidative capacity. Med Sci Sports Exerc 24:551–555

    Article  CAS  PubMed  Google Scholar 

  33. Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose K (2012) Diaphragm muscle thinning in mechanically ventilated patients. Chest 142:1455–1460. https://doi.org/10.1378/chest.11-1638

    Article  PubMed  Google Scholar 

  34. Hood DA (2001) Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157. https://doi.org/10.1152/jappl.2001.90.3.1137

    Article  CAS  PubMed  Google Scholar 

  35. Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, Spoelstra-de Man AM, Niessen HW, Manders E, van Hees HW, van den Brom CE, Silderhuis V, Lawlor MW, Labeit S, Stienen GJ, Hartemink KJ, Paul MA, Heunks LM, Ottenheijm CA (2015) Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med 191:1126–1138. https://doi.org/10.1164/rccm.201412-2214OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK (2012) Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med 40:1254–1260. https://doi.org/10.1097/CCM.0b013e31823c8cc9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hudson MB, Smuder AJ, Nelson WB, Wiggs MP, Shimkus KL, Fluckey JD, Szeto HH, Powers SK (2015) Partial support ventilation and mitochondrial-targeted antioxidants protect against ventilator-induced decreases in diaphragm muscle protein synthesis. PLoS One 10:e0137693. https://doi.org/10.1371/journal.pone.0137693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hussain SN, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, Bellenis I, Chaturvedi R, Gottfried SB, Metrakos P, Danialou G, Matecki S, Jaber S, Petrof BJ, Goldberg P (2010) Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 182:1377–1386. https://doi.org/10.1164/rccm.201002-0234OC

    Article  CAS  PubMed  Google Scholar 

  39. Hussain SN, Cornachione AS, Guichon C, Al Khunaizi A, Leite Fde S, Petrof BJ, Mofarrahi M, Moroz N, de Varennes B, Goldberg P, Rassier DE (2016) Prolonged controlled mechanical ventilation in humans triggers myofibrillar contractile dysfunction and myofilament protein loss in the diaphragm. Thorax 71:436–445. https://doi.org/10.1136/thoraxjnl-2015-207559

    Article  PubMed  Google Scholar 

  40. Hydock DS, Lien CY, Jensen BT, Schneider CM, Hayward R (2011) Characterization of the effect of in vivo doxorubicin treatment on skeletal muscle function in the rat. Anticancer Res 31:2023–2028

    CAS  PubMed  Google Scholar 

  41. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124:617–630. https://doi.org/10.1172/JCI72931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ichinoseki-Sekine N, Yoshihara T, Kakigi R, Sugiura T, Powers SK, Naito H (2014) Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy. J Appl Physiol 117:518–524. https://doi.org/10.1152/japplphysiol.00170.2014

    Article  CAS  PubMed  Google Scholar 

  43. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, Similowski T, Scheuermann V, Mebazaa A, Capdevila X, Mornet D, Mercier J, Lacampagne A, Philips A, Matecki S (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371. https://doi.org/10.1164/rccm.201004-0670OC

    Article  CAS  PubMed  Google Scholar 

  44. Kanter MM, Hamlin RL, Unverferth DV, Davis HW, Merola AJ (1985) Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin. J Appl Physiol 59:1298–1303

    Article  CAS  PubMed  Google Scholar 

  45. Karstoft K, Pedersen BK (2016) Skeletal muscle as a gene regulatory endocrine organ. Curr Opin Clin Nutr Metab Care 19:270–275. https://doi.org/10.1097/MCO.0000000000000283

    Article  CAS  PubMed  Google Scholar 

  46. Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK (2009) Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med 46:842–850. https://doi.org/10.1016/j.freeradbiomed.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kavazis AN, Smuder AJ, Min K, Tumer N, Powers SK (2010) Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72. Am J Phys Heart Circ Phys 299:H1515–H1524. https://doi.org/10.1152/ajpheart.00585.2010

    CAS  Article  Google Scholar 

  48. Kavazis AN, Smuder AJ, Powers SK (2014) Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. J Appl Physiol 117:223–230. https://doi.org/10.1152/japplphysiol.00210.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koch LG, Britton SL (2005) Divergent selection for aerobic capacity in rats as a model for complex disease. Integr Comp Biol 45:405–415. https://doi.org/10.1093/icb/45.3.405

    Article  PubMed  Google Scholar 

  50. Kondo H, Miura M, Itokawa Y (1991) Oxidative stress in skeletal muscle atrophied by immobilization. Acta Physiol Scand 142:527–528. https://doi.org/10.1111/j.1748-1716.1991.tb09191.x

    Article  CAS  PubMed  Google Scholar 

  51. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186. https://doi.org/10.1152/japplphysiol.01267.2001

    Article  CAS  PubMed  Google Scholar 

  52. Lee Y, Min K, Talbert EE, Kavazis AN, Smuder AJ, Willis WT, Powers SK (2012) Exercise protects cardiac mitochondria against ischemia-reperfusion injury. Med Sci Sports Exerc 44:397–405. https://doi.org/10.1249/MSS.0b013e318231c037

    Article  PubMed  Google Scholar 

  53. Locke M, Noble EG, Atkinson BG (1990) Exercising mammals synthesize stress proteins. Am J Phys 258:C723–C729. https://doi.org/10.1152/ajpcell.1990.258.4.C723

    Article  CAS  Google Scholar 

  54. Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhaes J, Ascensao A (2018) The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta 1869:189–199. https://doi.org/10.1016/j.bbcan.2018.01.002

    CAS  Article  Google Scholar 

  55. McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK (2007) Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 175:150–159. https://doi.org/10.1164/rccm.200601-142OC

    Article  CAS  PubMed  Google Scholar 

  56. McClung JM, Kavazis AN, Whidden MA, DeRuisseau KC, Falk DJ, Criswell DS, Powers SK (2007) Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB Akt) signalling. J Physiol 585:203–215. https://doi.org/10.1113/jphysiol.2007.141119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McClung JM, Whidden MA, Kavazis AN, Falk DJ, Deruisseau KC, Powers SK (2008) Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 294:R1608–R1617. https://doi.org/10.1152/ajpregu.00044.2008

    Article  CAS  PubMed  Google Scholar 

  58. McClung JM, Van Gammeren D, Whidden MA, Falk DJ, Kavazis AN, Hudson MB, Gayan-Ramirez G, Decramer M, DeRuisseau KC, Powers SK (2009) Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation. Crit Care Med 37:1373–1379. https://doi.org/10.1097/CCM.0b013e31819cef63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Min K, Kwon OS, Smuder AJ, Wiggs MP, Sollanek KJ, Christou DD, Yoo JK, Hwang MH, Szeto HH, Kavazis AN, Powers SK (2015) Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol 593:2017–2036. https://doi.org/10.1113/jphysiol.2014.286518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miyamoto Y, Baba Y, Sakamoto Y, Ohuchi M, Tokunaga R, Kurashige J, Hiyoshi Y, Iwagami S, Yoshida N, Watanabe M, Baba H (2015) Negative impact of skeletal muscle loss after systemic chemotherapy in patients with Unresectable colorectal Cancer. PLoS One 10:e0129742. https://doi.org/10.1371/journal.pone.0129742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moore RL, Gollnick PD (1982) Response of ventilatory muscles of the rat to endurance training. Pflugers Arch 392:268–271

    Article  CAS  PubMed  Google Scholar 

  62. Morton AB, Smuder A, Wiggs MP, Hall SE, Wawrzyniak N, Powers S (2016) Exercise-induced protection against ventilator-induced diaphragm atrophy is dependent upon increased diaphragmatic levels of superoxide dismutase 2. FASEB J 30:1244–1210

    Google Scholar 

  63. Morton AB, Mor Huertas A, Hinkley JM, Ichinoseki-Sekine N, Christou DD, Smuder AJ (2018) Mitochondrial accumulation of doxorubicin in cardiac and diaphragm muscle following exercise preconditioning. Mitochondrion. https://doi.org/10.1016/j.mito.2018.02.005

  64. Morton AB, Smuder A, Hyatt HW, Hinkley JM, Ichinoseki-Sekine N, Mor Huertas A, Powers S (2018) Overexpression of SOD2 in the diaphragm provides partial protection against ventilator-induced diaphragm atrophy and contractile dysfunction. FASEB J 32:856–815

    Google Scholar 

  65. Moulin M, Piquereau J, Mateo P, Fortin D, Rucker-Martin C, Gressette M, Lefebvre F, Gresikova M, Solgadi A, Veksler V, Garnier A, Ventura-Clapier R (2015) Sexual dimorphism of doxorubicin-mediated cardiotoxicity: potential role of energy metabolism remodeling. Circ Heart Fail 8:98–108. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001180

    Article  CAS  PubMed  Google Scholar 

  66. Moulin M, Solgadi A, Veksler V, Garnier A, Ventura-Clapier R, Chaminade P (2015) Sex-specific cardiac cardiolipin remodelling after doxorubicin treatment. Biol Sex Differ 6:20. https://doi.org/10.1186/s13293-015-0039-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK (2012) Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med 40:1857–1863. https://doi.org/10.1097/CCM.0b013e318246bb5d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, Godin R, Danialou G, Chaturvedi R, Rygiel K, Matecki S, Jaber S, Rosiers CD, Karpati G, Ferri L, Burelle Y, Turnbull DM, Taivassalo T, Petrof BJ (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140–1149. https://doi.org/10.1164/rccm.201206-0982OC

    Article  CAS  PubMed  Google Scholar 

  69. Powers SK (2017) Exercise: teaching myocytes new tricks. J Appl Physiol 123:460–472. https://doi.org/10.1152/japplphysiol.00418.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276. https://doi.org/10.1152/physrev.00031.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Powers SK, Locke DHA (2001) Exercise, heat shock proteins, and myocardial protection from I-R injury. Med Sci Sports Exerc 33:386–392

    Article  CAS  PubMed  Google Scholar 

  72. Powers SK, Lawler J, Criswell D, Dodd S, Grinton S, Bagby G, Silverman H (1990) Endurance-training-induced cellular adaptations in respiratory muscles. J Appl Physiol 68:2114–2118. https://doi.org/10.1152/jappl.1990.68.5.2114

    Article  CAS  PubMed  Google Scholar 

  73. Powers SK, Criswell D, Lieu FK, Dodd S, Silverman H (1992) Diaphragmatic fiber type specific adaptation to endurance exercise. Respir Physiol 89:195–207

    Article  CAS  PubMed  Google Scholar 

  74. Powers SK, Criswell D, Lieu FK, Dodd S, Silverman H (1992) Exercise-induced cellular alterations in the diaphragm. Am J Phys 263:R1093–R1098. https://doi.org/10.1152/ajpregu.1992.263.5.R1093

    CAS  Article  Google Scholar 

  75. Powers SK, Grinton S, Lawler J, Criswell D, Dodd S (1992) High intensity exercise training-induced metabolic alterations in respiratory muscles. Respir Physiol 89:169–177

    Article  CAS  PubMed  Google Scholar 

  76. Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, Dudley G (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Phys 266:R375–R380. https://doi.org/10.1152/ajpregu.1994.266.2.R375

    CAS  Article  Google Scholar 

  77. Powers SK, Criswell D, Lawler J, Martin D, Ji LL, Herb RA, Dudley G (1994) Regional training-induced alterations in diaphragmatic oxidative and antioxidant enzymes. Respir Physiol 95:227–237

    Article  CAS  PubMed  Google Scholar 

  78. Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN, Smuder AJ (2011) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39:1749–1759. https://doi.org/10.1097/CCM.0b013e3182190b62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Powers SK, Smuder AJ, Criswell DS (2011) Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal 15:2519–2528. https://doi.org/10.1089/ars.2011.3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Powers SK, Wiggs MP, Sollanek KJ, Smuder AJ (2013) Ventilator-induced diaphragm dysfunction: cause and effect. Am J Phys Regul Integr Comp Phys 305:R464–R477. https://doi.org/10.1152/ajpregu.00231.2013

    CAS  Article  Google Scholar 

  81. Powers SK, Lynch GS, Murphy KT, Reid MB, Zijdewind I (2016) Disease-induced skeletal muscle atrophy and fatigue. Med Sci Sports Exerc 48:2307–2319. https://doi.org/10.1249/MSS.0000000000000975

    Article  PubMed  PubMed Central  Google Scholar 

  82. Powers SK, Morton AB, Ahn B, Smuder AJ (2016) Redox control of skeletal muscle atrophy. Free Radic Biol Med 98:208–217. https://doi.org/10.1016/j.freeradbiomed.2016.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 110:6601–6606. https://doi.org/10.1073/pnas.1302961110

    Article  PubMed  PubMed Central  Google Scholar 

  84. Renu K, V GA, P BT, Arunachalam S (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy—an update. Eur J Pharmacol 818:241–253. https://doi.org/10.1016/j.ejphar.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  85. Sassoon CS, Zhu E, Fang L, Sieck GC, Powers SK (2014) Positive end-expiratory airway pressure does not aggravate ventilator-induced diaphragmatic dysfunction in rabbits. Crit Care 18:494. https://doi.org/10.1186/s13054-014-0494-0

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schepens T, Verbrugghe W, Dams K, Corthouts B, Parizel PM, Jorens PG (2015) The course of diaphragm atrophy in ventilated patients assessed with ultrasound: a longitudinal cohort study. Crit Care 19:422. https://doi.org/10.1186/s13054-015-1141-0

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schwartz AL, Mori M, Gao R, Nail LM, King ME (2001) Exercise reduces daily fatigue in women with breast cancer receiving chemotherapy. Med Sci Sports Exerc 33:718–723

    Article  CAS  PubMed  Google Scholar 

  88. Senf SM (2013) Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol 4:330. https://doi.org/10.3389/fphys.2013.00330

    Article  PubMed  PubMed Central  Google Scholar 

  89. Senf SM, Dodd SL, McClung JM, Judge AR (2008) Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22:3836–3845. https://doi.org/10.1096/fj.08-110163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Senf SM, Dodd SL, Judge AR (2010) FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am J Phys Cell Phys 298:C38–C45. https://doi.org/10.1152/ajpcell.00315.2009

    Article  CAS  Google Scholar 

  91. Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, Belcastro A, Powers SK (2002) Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 166:1369–1374. https://doi.org/10.1164/rccm.200202-088OC

    Article  PubMed  Google Scholar 

  92. Shanely RA, Van Gammeren D, Deruisseau KC, Zergeroglu AM, McKenzie MJ, Yarasheski KE, Powers SK (2004) Mechanical ventilation depresses protein synthesis in the rat diaphragm. Am J Respir Crit Care Med 170:994–999. https://doi.org/10.1164/rccm.200304-575OC

    Article  PubMed  Google Scholar 

  93. Smuder AJ, Kavazis AN, Min K, Powers SK (2011) Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol 111:1190–1198. https://doi.org/10.1152/japplphysiol.00429.2011

    Article  CAS  PubMed  Google Scholar 

  94. Smuder AJ, Min K, Hudson MB, Kavazis AN, Kwon OS, Nelson WB, Powers SK (2012) Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol 112:501–510. https://doi.org/10.1152/japplphysiol.01086.2011

    Article  CAS  PubMed  Google Scholar 

  95. Smuder AJ, Nelson WB, Hudson MB, Kavazis AN, Powers SK (2014) Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm. Anesthesiology 121:115–126. https://doi.org/10.1097/ALN.0000000000000245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smuder AJ, Gonzalez-Rothi EJ, Kwon OS, Morton AB, Sollanek KJ, Powers SK, Fuller DD (2016) Cervical spinal cord injury exacerbates ventilator-induced diaphragm dysfunction. J Appl Physiol 120:166–177. https://doi.org/10.1152/japplphysiol.00488.2015

    Article  CAS  PubMed  Google Scholar 

  97. Smuder AJ, Morton AB, Hall SE, Ahn B, Wiggs MP, Wawrzyniak N, Powers S (2016) HSP72 is required for exercise-induced protection against ventilator-induced diaphragm dysfunction. FASEB J 30:769–762

    Google Scholar 

  98. Sollanek KJ, Smuder AJ, Wiggs MP, Morton AB, Koch LG, Britton SL, Powers SK (2015) Role of intrinsic aerobic capacity and ventilator-induced diaphragm dysfunction. J Appl Physiol 118:849–857. https://doi.org/10.1152/japplphysiol.00797.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sollanek KJ, Burniston JG, Kavazis AN, Morton AB, Wiggs MP, Ahn B, Smuder AJ, Powers SK (2017) Global proteome changes in the rat diaphragm induced by endurance exercise training. PLoS One 12:e0171007. https://doi.org/10.1371/journal.pone.0171007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sorensen JC, Cheregi BD, Timpani CA, Nurgali K, Hayes A, Rybalka E (2016) Mitochondria: inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting? Cancer Chemother Pharmacol 78:673–683. https://doi.org/10.1007/s00280-016-3045-3

    Article  CAS  PubMed  Google Scholar 

  101. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  CAS  PubMed  Google Scholar 

  102. Talbert EE, Smuder AJ, Kwon OS, Sollanek KJ, Wiggs MP, Powers SK (2016) Blockage of the ryanodine receptor via azumolene does not prevent mechanical ventilation-induced diaphragm atrophy. PLoS One 11:e0148161. https://doi.org/10.1371/journal.pone.0148161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tang H, Lee M, Budak MT, Pietras N, Hittinger S, Vu M, Khuong A, Hoang CD, Hussain SN, Levine S, Shrager JB (2011) Intrinsic apoptosis in mechanically ventilated human diaphragm: linkage to a novel Fos/FoxO1/Stat3-Bim axis. FASEB J 25:2921–2936. https://doi.org/10.1096/fj.11-183798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thomason DB, Biggs RB, Booth FW (1989) Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Phys 257:R300–R305

    CAS  Google Scholar 

  105. Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341

    Article  PubMed  Google Scholar 

  106. Vassilakopoulos T, Zakynthinos S, Roussos C (1996) Respiratory muscles and weaning failure. Eur Respir J 9:2383–2400

    Article  CAS  PubMed  Google Scholar 

  107. Vincent HK, Powers SK, Demirel HA, Coombes JS, Naito H (1999) Exercise training protects against contraction-induced lipid peroxidation in the diaphragm. Eur J Appl Physiol Occup Physiol 79:268–273. https://doi.org/10.1007/s004210050505

    Article  CAS  PubMed  Google Scholar 

  108. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717

    Article  Google Scholar 

  109. Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK (2010) Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol 108:1376–1382. https://doi.org/10.1152/japplphysiol.00098.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yoshihara T, Ichinoseki-Sekine N, Kakigi R, Tsuzuki T, Sugiura T, Powers SK, Naito H (2015) Repeated exposure to heat stress results in a diaphragm phenotype that resists ventilator-induced diaphragm dysfunction. J Appl Physiol 119:1023–1031. https://doi.org/10.1152/japplphysiol.00438.2015

    Article  CAS  PubMed  Google Scholar 

  111. Zambon M, Beccaria P, Matsuno J, Gemma M, Frati E, Colombo S, Cabrini L, Landoni G, Zangrillo A (2016) Mechanical ventilation and diaphragmatic atrophy in critically ill patients: an ultrasound study. Crit Care Med 44:1347–1352. https://doi.org/10.1097/CCM.0000000000001657

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Institutes of Health (NIH R01 AR064189 awarded to SKP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branden Le Nguyen.

Additional information

This article is part of the special issue on Exercise Physiology: future opportunities and challenges in Pflügers Archiv – European Journal of Physiology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Powers, S.K., Duarte, J.A., Le Nguyen, B. et al. Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Arch - Eur J Physiol 471, 441–453 (2019). https://doi.org/10.1007/s00424-018-2227-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2227-8

Keywords

  • Skeletal muscle
  • Doxorubicin
  • Endurance exercise
  • Diaphragm
  • Mechanical ventilation
  • Doxorubicin
  • Disuse muscle atrophy
  • Preconditioning