Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 9, pp 1271–1289 | Cite as

Calcium- and voltage-gated BK channels in vascular smooth muscle

  • Alex M. DopicoEmail author
  • Anna N. Bukiya
  • Jonathan H. Jaggar
Invited Review
Part of the following topical collections:
  1. Invited Review

Abstract

Ion channels in vascular smooth muscle regulate myogenic tone and vessel contractility. In particular, activation of calcium- and voltage-gated potassium channels of large conductance (BK channels) results in outward current that shifts the membrane potential toward more negative values, triggering a negative feed-back loop on depolarization-induced calcium influx and SM contraction. In this short review, we first present the molecular basis of vascular smooth muscle BK channels and the role of subunit composition and trafficking in the regulation of myogenic tone and vascular contractility. BK channel modulation by endogenous signaling molecules, and paracrine and endocrine mediators follows. Lastly, we describe the functional changes in smooth muscle BK channels that contribute to, or are triggered by, common physiological conditions and pathologies, including obesity, diabetes, and systemic hypertension.

Keywords

Slo1 gene KCNMB1 gene MaxiK channel Calcium signaling Vascular smooth muscle Vascular pathophysiology 

Notes

Acknowledgements

The authors thank Mrs. Easter Jenkins and Ms. Kelsey Cleland North for their excellent technical assistance. This work was supported by the National Institute of Alcohol Abuse and Alcoholism and the National Heart and Lung Institute through grants R37 AA11560 (AMD), R01 HL104631 (AMD), R01 AA023764 (ANB), R01 HL67061 (JHJ), HL133256, (JHJ), and HL133745 (JHJ).

References

  1. 1.
    Ahn DS, Kim YB, Lee YH, Kang BS, Kang DH (1994) Fatty acids directly increase the activity of Ca2+-activated K+ channels in rabbit coronary smooth muscle cells. Yonsei Med J 35:10–24.  https://doi.org/10.3349/ymj.1994.35.1.10 PubMedCrossRefGoogle Scholar
  2. 2.
    Ahn YT, Kim YM, Adams E, Lyu SC, Alvira CM, Cornfield DN (2012) Hypoxia-inducible factor-1alpha regulates KCNMB1 expression in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 302:L352–L359.  https://doi.org/10.1152/ajplung.00302.2011 PubMedCrossRefGoogle Scholar
  3. 3.
    Amberg GC, Bonev AD, Rossow CF, Nelson MT, Santana LF (2003) Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J Clin Invest 112:717–724.  https://doi.org/10.1172/JCI18684 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED (2003) Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BKCa channels. Circulation 107:769–776PubMedCrossRefGoogle Scholar
  5. 5.
    Au AL, Seto SW, Chan SW, Chan MS, Kwan YW (2006) Modulation by homocysteine of the iberiotoxin-sensitive, Ca2+-activated K+ channels of porcine coronary artery smooth muscle cells. Eur J Pharmacol 546:109–119.  https://doi.org/10.1016/j.ejphar.2006.06.073 PubMedCrossRefGoogle Scholar
  6. 6.
    Balderas E, Zhang J, Stefani E, Toro L (2015) Mitochondrial BKCa channel. Front Physiol 6:104.  https://doi.org/10.3389/fphys.2015.00104 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Barman SA, Zhu S, Han G, White RE (2003) cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 284:L1004–L1011.  https://doi.org/10.1152/ajplung.00295.2002 PubMedCrossRefGoogle Scholar
  8. 8.
    Barman SA, Zhu S, White RE (2004) PKC activates BKCa channels in rat pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 286:L1275–L1281.  https://doi.org/10.1152/ajplung.00259.2003 PubMedCrossRefGoogle Scholar
  9. 9.
    Behrens R, Nolting A, Reimann F, Schwarz M, Waldschutz R, Pongs O (2000) hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett 474:99–106PubMedCrossRefGoogle Scholar
  10. 10.
    Benham CD, Bolton TB, Lang RJ, Takewaki T (1986) Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery. J Physiol 371:45–67PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Betts LC, Kozlowski RZ (2000) Electrophysiological effects of endothelin-1 and their relationship to contraction in rat renal arterial smooth muscle. Br J Pharmacol 130:787–796.  https://doi.org/10.1038/sj.bjp.0703377 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bol M, Leybaert L, Vanheel B (2012) Influence of methanandamide and CGRP on potassium currents in smooth muscle cells of small mesenteric arteries. Pflügers Arch 463:669–677.  https://doi.org/10.1007/s00424-012-1083-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Bonev AD, Jaggar JH, Rubart M, Nelson MT (1997) Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries. Am J Physiol Cell Physiol 273:C2090–C2095.  https://doi.org/10.1152/ajpcell.1997.273.6.C2090 CrossRefGoogle Scholar
  14. 14.
    Bonnet S, Archer SL (2007) Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacol Ther 115:56–69.  https://doi.org/10.1016/j.pharmthera.2007.03.014 PubMedCrossRefGoogle Scholar
  15. 15.
    Bratz IN, Dick GM, Partridge LD, Kanagy NL (2005) Reduced molecular expression of K+ channel proteins in vascular smooth muscle from rats made hypertensive with N{omega}-nitro-L-arginine. Am J Physiol Heart Circ Physiol 289:H1277–H1283.  https://doi.org/10.1152/ajpheart.01052.2004 PubMedCrossRefGoogle Scholar
  16. 16.
    Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256:532–535PubMedCrossRefGoogle Scholar
  17. 17.
    Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461PubMedCrossRefGoogle Scholar
  18. 18.
    Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW (2000) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407:870–876.  https://doi.org/10.1038/35038011 PubMedCrossRefGoogle Scholar
  19. 19.
    Brzezinska AK, Gebremedhin D, Chilian WM, Kalyanaraman B, Elliott SJ (2000) Peroxynitrite reversibly inhibits Ca2+-activated K+ channels in rat cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 278:H1883–H1890.  https://doi.org/10.1152/ajpheart.2000.278.6.H1883 PubMedCrossRefGoogle Scholar
  20. 20.
    Bukiya AN, Liu J, Toro L, Dopico AM (2007) Beta1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+-activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol 72:359–369.  https://doi.org/10.1124/mol.107.034330 PubMedCrossRefGoogle Scholar
  21. 21.
    Bukiya AN, McMillan J, Parrill AL, Dopico AM (2008) Structural determinants of monohydroxylated bile acids to activate beta 1 subunit-containing BK channels. J Lipid Res 49:2441–2451.  https://doi.org/10.1194/jlr.M800286-JLR200 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bukiya AN, Vaithianathan T, Toro L, Dopico AM (2008) The second transmembrane domain of the large conductance, voltage- and calcium-gated potassium channel beta1 subunit is a lithocholate sensor. FEBS Lett 582:673–678.  https://doi.org/10.1016/j.febslet.2008.01.036 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bukiya AN, Vaithianathan T, Toro L, Dopico AM (2009) Channel beta2-4 subunits fail to substitute for beta1 in sensitizing BK channels to lithocholate. Biochem Biophys Res Commun 390:995–1000.  https://doi.org/10.1016/j.bbrc.2009.10.091 PubMedCrossRefGoogle Scholar
  24. 24.
    Bukiya AN, Belani JD, Rychnovsky S, Dopico AM (2011) Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions. J Gen Physiol 137:93–110.  https://doi.org/10.1085/jgp.201010519 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bukiya AN, Singh AK, Parrill AL, Dopico AM (2011) The steroid interaction site in transmembrane domain 2 of the large conductance, voltage- and calcium-gated potassium (BK) channel accessory beta1 subunit. Proc Natl Acad Sci U S A 108:20207–20212.  https://doi.org/10.1073/pnas.1112901108 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bukiya AN, McMillan JE, Fedinec AL, Patil SA, Miller DD, Leffler CW, Parrill AL, Dopico AM (2013) Cerebrovascular dilation via selective targeting of the cholane steroid-recognition site in the BK channel β1-subunit by a novel nonsteroidal agent. Mol Pharmacol 83:1030–1044.  https://doi.org/10.1124/mol.112.083519 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bukiya AN, Dopico AM, Leffler CW, Fedinec A (2014) Dietary cholesterol protects against alcohol-induced cerebral artery constriction. Alcohol Clin Exp Res 38:1216–1226.  https://doi.org/10.1111/acer.12373 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bukiya AN, McMillan J, Liu J, Shivakumar B, Parrill AL, Dopico AM (2014) Activation of calcium- and voltage-gated potassium channels of large conductance by leukotriene B4. J Biol Chem 289:35314–35325.  https://doi.org/10.1074/jbc.M114.577825 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bukiya AN, Seleverstov O, Bisen S, Dopico AM (2016) Age-dependent susceptibility to alcohol-induced cerebral artery constriction. J drug alcohol res 5 doi:  https://doi.org/10.4303/jdar/236002
  30. 30.
    Burnham MP, Johnson IT, Weston AH (2006) Reduced Ca2+-dependent activation of large-conductance Ca2+-activated K+ channels from arteries of type 2 diabetic Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 290:H1520–H1527.  https://doi.org/10.1152/ajpheart.00827.2005 PubMedCrossRefGoogle Scholar
  31. 31.
    Cai B, Gong D, Pan Z, Liu Y, Qian H, Zhang Y, Jiao J, Lu Y, Yang B (2007) Large-conductance Ca2+-activated K+ currents blocked and impaired by homocysteine in human and rat mesenteric artery smooth muscle cells. Life Sci 80:2060–2066.  https://doi.org/10.1016/j.lfs.2007.03.003 PubMedCrossRefGoogle Scholar
  32. 32.
    Campbell WB, Holmes BB, Falck JR, Capdevila JH, Gauthier KM (2006) Regulation of potassium channels in coronary smooth muscle by adenoviral expression of cytochrome P-450 epoxygenase. Am J Physiol Heart Circ Physiol 290:H64–H71.  https://doi.org/10.1152/ajpheart.00516.2005 PubMedCrossRefGoogle Scholar
  33. 33.
    Chang T, Wu L, Wang R (2006) Altered expression of BK channel beta1 subunit in vascular tissues from spontaneously hypertensive rats. Am J Hypertens 19:678–685.  https://doi.org/10.1016/j.amjhyper.2006.01.014 PubMedCrossRefGoogle Scholar
  34. 34.
    Chen L, Tian L, MacDonald SH, McClafferty H, Hammond MS, Huibant JM, Ruth P, Knaus HG, Shipston MJ (2005) Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) alpha-subunits generated from a single site of splicing. J Biol Chem 280:33599–33609.  https://doi.org/10.1074/jbc.M505383200 PubMedCrossRefGoogle Scholar
  35. 35.
    Cheng J, Zeng XR, Li PY, Lu TT, Tan XQ, Wen J, Yang Y (2012) Beta-estradiol activates BKCa in mesenteric artery smooth muscle cells of post-menopause women. Sheng li Xue Bao 64:121–128PubMedGoogle Scholar
  36. 36.
    Cheng J, Mao L, Wen J, Li PY, Wang N, Tan XQ, Zhang XD, Zeng XR, Xu L, Xia XM, Xia D, He K, Su S, Yao H, Yang Y (2016) Different effects of hypertension and age on the function of large conductance calcium- and voltage-activated potassium channels in human mesentery artery smooth muscle cells. J Am Heart Assoc 5  https://doi.org/10.1161/JAHA.116.003913
  37. 37.
    Climent B, Sanchez A, Moreno L, Perez-Vizcaino F, Garcia-Sacristan A, Rivera L, Prieto D (2017) Underlying mechanisms preserving coronary basal tone and NO-mediated relaxation in obesity: involvement of beta1 subunit-mediated upregulation of BKCa channels. Atherosclerosis 263:227–236.  https://doi.org/10.1016/j.atherosclerosis.2017.06.354 PubMedCrossRefGoogle Scholar
  38. 38.
    Dabertrand F, Nelson MT, Brayden JE (2012) Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels. Circ Res 110:285–294.  https://doi.org/10.1161/CIRCRESAHA.111.258145 PubMedCrossRefGoogle Scholar
  39. 39.
    De Wet H, Allen M, Holmes C, Stobbart M, Lippiat JD, Callaghan R (2006) Modulation of the BK channel by estrogens: examination at single channel level. Mol Membr Biol 23:420–429.  https://doi.org/10.1080/09687860600802803 PubMedCrossRefGoogle Scholar
  40. 40.
    Deenadayalu V, Puttabyatappa Y, Liu AT, Stallone JN, White RE (2012) Testosterone-induced relaxation of coronary arteries: activation of BKCa channels via the cGMP-dependent protein kinase. Am J Physiol Heart Circ Physiol 302:H115–H123.  https://doi.org/10.1152/ajpheart.00046.2011 PubMedCrossRefGoogle Scholar
  41. 41.
    Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 52:690–718PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dhungel KU, Kim TW, Sharma N, Bhattarai JP, Park SA, Han SK, Kim CJ (2012) Magnesium increases iberiotoxin-sensitive large conductance calcium activated potassium currents on the basilar artery smooth muscle cells in rabbits. Neurol Res 34:11–16.  https://doi.org/10.1179/1743132811Y.0000000049 PubMedCrossRefGoogle Scholar
  43. 43.
    Dimitropoulou C, White RE, Fuchs L, Zhang H, Catravas JD, Carrier GO (2001) Angiotensin II relaxes microvessels via the AT2 receptor and Ca2+-activated K+ (BKCa) channels. Hypertension 37:301–307PubMedCrossRefGoogle Scholar
  44. 44.
    Dimitropoulou C, West L, Field MB, White RE, Reddy LM, Falck JR, Imig JD (2007) Protein phosphatase 2A and Ca2+-activated K+ channels contribute to 11,12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. Prostaglandins Other Lipid Mediat 83:50–61.  https://doi.org/10.1016/j.prostaglandins.2006.09.008 PubMedCrossRefGoogle Scholar
  45. 45.
    Dong L, Zheng YM, Van Riper D, Rathore R, Liu QH, Singer HA, Wang YX (2008) Functional and molecular evidence for impairment of calcium-activated potassium channels in type-1 diabetic cerebral artery smooth muscle cells. J Cereb Blood Flow Metab 28:377–386.  https://doi.org/10.1038/sj.jcbfm.9600536 PubMedCrossRefGoogle Scholar
  46. 46.
    Dopico AM, Bukiya AN (2014) Lipid regulation of BK channel function. Front Physiol 5:312.  https://doi.org/10.3389/fphys.2014.00312 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dopico AM, Bukiya AN (2017) Regulation of Ca2+-sensitive K+ channels by cholesterol and bile acids via distinct channel subunits and sites. Curr Top Membr 80:53–93.  https://doi.org/10.1016/bs.ctm.2017.07.001 PubMedCrossRefGoogle Scholar
  48. 48.
    Dopico AM, Kirber MT, Singer JJ, Walsh JV Jr (1994) Membrane stretch directly activates large conductance Ca2+-activated K+ channels in mesenteric artery smooth muscle cells. Am J Hypertens 7:82–89PubMedCrossRefGoogle Scholar
  49. 49.
    Dopico AM, Walsh JV Jr, Singer JJ (2002) Natural bile acids and synthetic analogues modulate large conductance Ca2+-activated K+ (BKCa) channel activity in smooth muscle cells. J Gen Physiol 119:251–273PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dopico AM, Bukiya AN, Singh AK (2012) Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther 135:133–150.  https://doi.org/10.1016/j.pharmthera.2012.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dospinescu C, Widmer H, Rowe I, Wainwright C, Cruickshank SF (2012) Hypoxia sensitivity of a voltage-gated potassium current in porcine intrapulmonary vein smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 303:L476–L486.  https://doi.org/10.1152/ajplung.00157.2012 PubMedCrossRefGoogle Scholar
  52. 52.
    Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279.  https://doi.org/10.1161/01.RES.0000194321.60300.d6 PubMedCrossRefGoogle Scholar
  53. 53.
    Erxleben C, Everhart AL, Romeo C, Florance H, Bauer MB, Alcorta DA, Rossie S, Shipston MJ, Armstrong DL (2002) Interacting effects of N-terminal variation and strex exon splicing on slo potassium channel regulation by calcium, phosphorylation, and oxidation. J Biol Chem 277:27045–27052.  https://doi.org/10.1074/jbc.M203087200 PubMedCrossRefGoogle Scholar
  54. 54.
    Evanson KW, Bannister JP, Leo MD, Jaggar JH (2014) LRRC26 is a functional BK channel auxiliary gamma subunit in arterial smooth muscle cells. Circ Res 115:423–431.  https://doi.org/10.1161/CIRCRESAHA.115.303407 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fedorenko O, Yarotskyy V, Duzhyy D, Marchenko S (2010) The large-conductance ion channels in the nuclear envelope of central neurons. Pflügers Arch 460:1045–1050.  https://doi.org/10.1007/s00424-010-0882-5 PubMedCrossRefGoogle Scholar
  56. 56.
    Fernández-Fernández JM, Tomas M, Vazquez E, Orio P, Latorre R, Senti M, Marrugat J, Valverde MA (2004) Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. J Clin Invest 113:1032–1039.  https://doi.org/10.1172/JCI20347 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fernández-Marino AI, Cidad P, Zafra D, Nocito L, Dominguez J, Olivan-Viguera A, Kohler R, Lopez-Lopez JR, Perez-Garcia MT, Valverde MA, Guinovart JJ, Fernández-Fernández JM (2015) Tungstate-targeting of BKalphabeta1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle. PLoS One 10:e0118148.  https://doi.org/10.1371/journal.pone.0118148 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gao Y, Yang Y, Guan Q, Pang X, Zhang H, Zeng D (2010) IL-1beta modulate the Ca(2+)-activated big-conductance K channels (BK) via reactive oxygen species in cultured rat aorta smooth muscle cells. Mol Cell Biochem 338:59–68.  https://doi.org/10.1007/s11010-009-0338-4 PubMedCrossRefGoogle Scholar
  59. 59.
    Garland CJ (1987) The role of membrane depolarization in the contractile response of the rabbit basilar artery to 5-hydroxytryptamine. J Physiol 392:333–348PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Gelband CH, Silberberg SD, Groschner K, van Breemen C (1990) ATP inhibits smooth muscle Ca2+-activated K+ channels. Proc Biol Sci 242:23–28.  https://doi.org/10.1098/rspb.1990.0098 PubMedCrossRefGoogle Scholar
  61. 61.
    Giraldez T, Rothberg BS (2017) Understanding the conformational motions of RCK gating rings. J Gen Physiol 149:431–441.  https://doi.org/10.1085/jgp.201611726 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Guan Y, Li N, Tian YM, Zhang L, Ma HJ, Maslov LN, Wang S, Zhang Y (2016) Chronic intermittent hypobaric hypoxia antagonizes renal vascular hypertension by enhancement of vasorelaxation via activating BKCa. Life Sci 157:74–81.  https://doi.org/10.1016/j.lfs.2016.05.028 PubMedCrossRefGoogle Scholar
  63. 63.
    Han G, Yu X, Lu L, Li S, Ma H, Zhu S, Cui X, White RE (2006) Estrogen receptor alpha mediates acute potassium channel stimulation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 316:1025–1030.  https://doi.org/10.1124/jpet.105.093542 PubMedCrossRefGoogle Scholar
  64. 64.
    Han G, Ma H, Chintala R, Miyake K, Fulton DJ, Barman SA, White RE (2007) Nongenomic, endothelium-independent effects of estrogen on human coronary smooth muscle are mediated by type I (neuronal) NOS and PI3-kinase-Akt signaling. Am J Physiol Heart Circ Physiol 293:H314–H321.  https://doi.org/10.1152/ajpheart.01342.2006 PubMedCrossRefGoogle Scholar
  65. 65.
    Harder DR (1980) Comparison of electrical properties of middle cerebral and mesenteric artery in cat. Am J Phys 239:C23–C26.  https://doi.org/10.1152/ajpcell.1980.239.1.C23 CrossRefGoogle Scholar
  66. 66.
    Harder DR (1984) Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ Res 55:197–202PubMedCrossRefGoogle Scholar
  67. 67.
    Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y (1998) Hydrogen peroxide-induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-activated K+ channels. Heart Vessel 13:9–17CrossRefGoogle Scholar
  68. 68.
    Hercule HC, Salanova B, Essin K, Honeck H, Falck JR, Sausbier M, Ruth P, Schunck WH, Luft FC, Gollasch M (2007) The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Exp Physiol 92:1067–1076.  https://doi.org/10.1113/expphysiol.2007.038166 PubMedCrossRefGoogle Scholar
  69. 69.
    Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ (2001) Invited review: arteriolar smooth muscle mechanotransduction: Ca2+ signaling pathways underlying myogenic reactivity. J Appl Physiol (1985) 91:973–83 DOI  https://doi.org/10.1152/jappl.2001.91.2.973
  70. 70.
    Hoang L, Mathers DA (1998) Bacterial endotoxin alters kinetics of BK channels in rat cerebrovascular smooth muscle cells. Biochim Biophys Acta 1369:335–345PubMedCrossRefGoogle Scholar
  71. 71.
    Hoang LM, Mathers DA (1998) Internally applied endotoxin and the activation of BK channels in cerebral artery smooth muscle via a nitric oxide-like pathway. Br J Pharmacol 123:5–12.  https://doi.org/10.1038/sj.bjp.0701570 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hoang LM, Chen C, Mathers DA (1997) Lipopolysaccharide rapidly activates K+ channels at the intracellular membrane face of rat cerebral artery smooth muscle cells. Neurosci Lett 231:25–28PubMedCrossRefGoogle Scholar
  73. 73.
    Hoshi T, Pantazis A, Olcese R (2013) Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 28:172–189.  https://doi.org/10.1152/physiol.00055.2012 CrossRefGoogle Scholar
  74. 74.
    Hoshi T, Tian Y, Xu R, Heinemann SH, Hou S (2013) Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. Proc Natl Acad Sci U S A 110:4822–4827.  https://doi.org/10.1073/pnas.1222003110 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hoshi T, Wissuwa B, Tian Y, Tajima N, Xu R, Bauer M, Heinemann SH, Hou S (2013) Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proc Natl Acad Sci U S A 110:4816–4821.  https://doi.org/10.1073/pnas.1221997110 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hu XQ, Zhang L (2012) Function and regulation of large conductance Ca2+-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 17:974–987.  https://doi.org/10.1016/j.drudis.2012.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hu SL, Kim HS, Jeng AY (1991) Dual action of endothelin-1 on the Ca2+-activated K+ channel in smooth muscle cells of porcine coronary artery. Eur J Pharmacol 194:31–36PubMedCrossRefGoogle Scholar
  78. 78.
    Hu S, Kim HS, Savage P, Jeng AY (1997) Activation of BKCa channel via endothelin ETA receptors in porcine coronary artery smooth muscle cells. Eur J Pharmacol 324:277–282PubMedCrossRefGoogle Scholar
  79. 79.
    Hu XQ, Xiao D, Zhu R, Huang X, Yang S, Wilson S, Zhang L (2011) Pregnancy upregulates large-conductance Ca2+-activated K+ channel activity and attenuates myogenic tone in uterine arteries. Hypertension 58:1132–1139.  https://doi.org/10.1161/HYPERTENSIONAHA.111.179952 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149.  https://doi.org/10.1152/physrev.00059.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Inoue R, Kitamura K, Kuriyama H (1985) Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein. Pflügers Arch 405:173–179PubMedCrossRefGoogle Scholar
  82. 82.
    Jaggar JH, Nelson MT (2000) Differential regulation of Ca2+ sparks and Ca2+ waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 279:C1528–C1539.  https://doi.org/10.1152/ajpcell.2000.279.5.C1528 PubMedCrossRefGoogle Scholar
  83. 83.
    Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Rubart M, Stevenson AS, Lederer WJ, Knot HJ, Bonev AD, Nelson MT (1998) Ca2+ channels, ryanodine receptors and Ca2+-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand 164:577–587.  https://doi.org/10.1046/j.1365-201X.1998.00462.x PubMedCrossRefGoogle Scholar
  84. 84.
    Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 278:C235–C256.  https://doi.org/10.1152/ajpcell.2000.278.2.C235 PubMedCrossRefGoogle Scholar
  85. 85.
    Jaggar JH, Leffler CW, Cheranov SY, Tcheranova D, Shuyu E, Cheng X (2002) Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res 91:610–617PubMedCrossRefGoogle Scholar
  86. 86.
    Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW (2005) Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels. Circ Res 97:805–812.  https://doi.org/10.1161/01.RES.0000186180.47148.7b PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H (2017) International Union of Basic and Clinical Pharmacology. C. Nomenclature and properties of calcium-activated and sodium-activated potassium channels. Pharmacol Rev 69:1–11.  https://doi.org/10.1124/pr.116.012864 PubMedCrossRefGoogle Scholar
  88. 88.
    Karlin A (2015) Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: a model. J Gen Physiol 146:79–96.  https://doi.org/10.1085/jgp.201511380 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kidd MW, Leo MD, Bannister JP, Jaggar JH (2015) Intravascular pressure enhances the abundance of functional Kv1.5 channels at the surface of arterial smooth muscle cells. Sci Signal 8:ra83.  https://doi.org/10.1126/scisignal.aac5128 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kirber MT, Ordway RW, Clapp LH, Walsh JV Jr, Singer JJ (1992) Both membrane stretch and fatty acids directly activate large conductance Ca2+-activated K+ channels in vascular smooth muscle cells. FEBS Lett 297:24–28PubMedCrossRefGoogle Scholar
  91. 91.
    Knot HJ, Nelson MT (1998) Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508(Pt 1):199–209PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Koide M, Syed AU, Braas KM, May V, Wellman GC (2014) Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca2+-activated (BK) and ATP-sensitive (K ATP) K+ channels. J Mol Neurosci 54:443–450.  https://doi.org/10.1007/s12031-014-0301-z PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Krishnamoorthy-Natarajan G, Koide M (2016) BK channels in the vascular system. Int Rev Neurobiol 128:401–438.  https://doi.org/10.1016/bs.irn.2016.03.017 PubMedCrossRefGoogle Scholar
  94. 94.
    Kuntamallappanavar G, Dopico AM (2016) Alcohol modulation of BK channel gating depends on beta subunit composition. J Gen Physiol 148:419–440.  https://doi.org/10.1085/jgp.201611594 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kuntamallappanavar G, Dopico AM (2017) BK beta1 subunit-dependent facilitation of ethanol inhibition of BK current and cerebral artery constriction is mediated by the beta1 transmembrane domain 2. Br J Pharmacol 174:4430–4448.  https://doi.org/10.1111/bph.14046 PubMedCrossRefGoogle Scholar
  96. 96.
    Kur J, McGahon MK, Fernández JA, Scholfield CN, McGeown JG, Curtis TM (2014) Role of ion channels and subcellular Ca2+ signaling in arachidonic acid-induced dilation of pressurized retinal arterioles. Invest Ophthalmol Vis Sci 55:2893–2902.  https://doi.org/10.1167/iovs.13-13511 PubMedCrossRefGoogle Scholar
  97. 97.
    Kyle BD, Braun AP (2014) The regulation of BK channel activity by pre- and post-translational modifications. Front Physiol 5:316.  https://doi.org/10.3389/fphys.2014.00316 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kyle BD, Hurst S, Swayze RD, Sheng J, Braun AP (2013) Specific phosphorylation sites underlie the stimulation of a large conductance, Ca2+-activated K+ channel by cGMP-dependent protein kinase. FASEB J 27:2027–2038.  https://doi.org/10.1096/fj.12-223669 PubMedCrossRefGoogle Scholar
  99. 99.
    Lai GJ, McCobb DP (2002) Opposing actions of adrenal androgens and glucocorticoids on alternative splicing of Slo potassium channels in bovine chromaffin cells. Proc Natl Acad Sci U S A 99:7722–7727.  https://doi.org/10.1073/pnas.112619799 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O (2017) Molecular determinants of BK channel functional diversity and functioning. Physiol Rev 97:39–87.  https://doi.org/10.1152/physrev.00001.2016 PubMedCrossRefGoogle Scholar
  101. 101.
    Lauterbach B, Barbosa-Sicard E, Wang MH, Honeck H, Kargel E, Theuer J, Schwartzman ML, Haller H, Luft FC, Gollasch M, Schunck WH (2002) Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension 39:609–613PubMedCrossRefGoogle Scholar
  102. 102.
    Lee S, Park M, So I, Earm YE (1994) NADH and NAD modulates Ca2+-activated K+ channels in small pulmonary arterial smooth muscle cells of the rabbit. Pflügers Arch 427:378–380PubMedCrossRefGoogle Scholar
  103. 103.
    Leffler CW, Parfenova H, Jaggar JH (2011) Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol 301:H1–H11.  https://doi.org/10.1152/ajpheart.00230.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Leo MD, Bannister JP, Narayanan D, Nair A, Grubbs JE, Gabrick KS, Boop FA, Jaggar JH (2014) Dynamic regulation of beta1 subunit trafficking controls vascular contractility. Proc Natl Acad Sci U S A 111:2361–2366.  https://doi.org/10.1073/pnas.1317527111 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Leo MD, Bulley S, Bannister JP, Kuruvilla KP, Narayanan D, Jaggar JH (2015) Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction. Am J Physiol Cell Physiol 309:C392–C402.  https://doi.org/10.1152/ajpcell.00127.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Leo MD, Zhai X, Muralidharan P, Kuruvilla KP, Bulley S, Boop FA, Jaggar JH (2017) Membrane depolarization activates BK channels through ROCK-mediated beta1 subunit surface trafficking to limit vasoconstriction. Sci Signal  https://doi.org/10.1126/scisignal.aah5417
  107. 107.
    Lesh RE, Nixon GF, Fleischer S, Airey JA, Somlyo AP, Somlyo AV (1998) Localization of ryanodine receptors in smooth muscle. Circ Res 82:175–185PubMedCrossRefGoogle Scholar
  108. 108.
    Li B, Gao TM (2016) Functional role of mitochondrial and nuclear BK channels. Int Rev Neurobiol 128:163–191.  https://doi.org/10.1016/bs.irn.2016.03.018 PubMedCrossRefGoogle Scholar
  109. 109.
    Li Q, Yan J (2016) Modulation of BK channel function by auxiliary beta and gamma subunits. Int Rev Neurobiol 128:51–90.  https://doi.org/10.1016/bs.irn.2016.03.015 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Li A, Adebiyi A, Leffler CW, Jaggar JH (2006) KCa channel insensitivity to Ca2+ sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 291:H1118–H1125.  https://doi.org/10.1152/ajpheart.01308.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Liang CF, Au AL, Leung SW, Ng KF, Feletou M, Kwan YW, Man RY, Vanhoutte PM (2010) Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle. J Pharmacol Exp Ther 334:223–231.  https://doi.org/10.1124/jpet.110.166652 PubMedCrossRefGoogle Scholar
  112. 112.
    Lin MT, Longo LD, Pearce WJ, Hessinger DA (2005) Ca2+-activated K+ channel-associated phosphatase and kinase activities during development. Am J Physiol Heart Circ Physiol 289:H414–H425.  https://doi.org/10.1152/ajpheart.01079.2004 PubMedCrossRefGoogle Scholar
  113. 113.
    Lin MT, Hessinger DA, Pearce WJ, Longo LD (2006) Modulation of BK channel calcium affinity by differential phosphorylation in developing ovine basilar artery myocytes. Am J Physiol Heart Circ Physiol 291:H732–H740.  https://doi.org/10.1152/ajpheart.01357.2005 PubMedCrossRefGoogle Scholar
  114. 114.
    Liu Y, Gutterman DD (2002) The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation. Vascul Pharmacol 38:43–49PubMedCrossRefGoogle Scholar
  115. 115.
    Liu Y, Hudetz AG, Knaus HG, Rusch NJ (1998) Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm. Circ Res 82:729–737PubMedCrossRefGoogle Scholar
  116. 116.
    Liu Y, Terata K, Chai Q, Li H, Kleinman LH, Gutterman DD (2002) Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circ Res 91:1070–1076PubMedCrossRefGoogle Scholar
  117. 117.
    Liu J, Asuncion-Chin M, Liu P, Dopico AM (2006) CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci 9:41–49.  https://doi.org/10.1038/nn1602 PubMedCrossRefGoogle Scholar
  118. 118.
    Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD (2011) H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res 108:566–573.  https://doi.org/10.1161/CIRCRESAHA.110.237636 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Loot AE, Moneke I, Keseru B, Oelze M, Syzonenko T, Daiber A, Fleming I (2012) 11,12-EET stimulates the association of BK channel alpha and beta1 subunits in mitochondria to induce pulmonary vasoconstriction. PLoS One 7:e46065.  https://doi.org/10.1371/journal.pone.0046065 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lu T, Katakam PV, VanRollins M, Weintraub NL, Spector AA, Lee HC (2001) Dihydroxyeicosatrienoic acids are potent activators of Ca2+-activated K+ channels in isolated rat coronary arterial myocytes. J Physiol 534:651–667PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, Toro L (2006) MaxiK channel partners: physiological impact. J Physiol 570:65–72.  https://doi.org/10.1113/jphysiol.2005.098913 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lu T, He T, Katusic ZS, Lee HC (2006) Molecular mechanisms mediating inhibition of human large conductance Ca2+-activated K+ channels by high glucose. Circ Res 99:607–616.  https://doi.org/10.1161/01.RES.0000243147.41792.93 PubMedCrossRefGoogle Scholar
  123. 123.
    Lu T, Sun X, Li Y, Chai Q, Wang XL, Lee HC (2017) Role of Nrf2 signaling in the regulation of vascular BK channel beta1 subunit expression and BK channel function in high-fat diet-induced diabetic mice. Diabetes 66:2681–2690.  https://doi.org/10.2337/db17-0181 PubMedCrossRefGoogle Scholar
  124. 124.
    Lynch FM, Withers SB, Yao Z, Werner ME, Edwards G, Weston AH, Heagerty AM (2013) Perivascular adipose tissue-derived adiponectin activates BKCa channels to induce anticontractile responses. Am J Physiol Heart Circ Physiol 304:H786–H795.  https://doi.org/10.1152/ajpheart.00697.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Maher J, Hunter AC, Mabley JG, Lippiat J, Allen MC (2013) Smooth muscle relaxation and activation of the large conductance ca++-activated K+ (BKCa) channel by novel oestrogens. Br J Pharmacol 169:1153–1165.  https://doi.org/10.1111/bph.12211 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Marijic J, Li Q, Song M, Nishimaru K, Stefani E, Toro L (2001) Decreased expression of voltage- and Ca2+-activated K+ channels in coronary smooth muscle during aging. Circ Res 88:210–216PubMedCrossRefGoogle Scholar
  127. 127.
    Martin P, Moncada M, Kuntamallappanavar G, Dopico AM, Milesi V (2018) Activation of human smooth muscle BK channels by hydrochlorothiazide requires cell integrity and the presence of BK beta1 subunit. Acta Pharmacol Sin 39:371–381.  https://doi.org/10.1038/aps.2017.133 PubMedCrossRefGoogle Scholar
  128. 128.
    Mauban JR, Lamont C, Balke CW, Wier WG (2001) Adrenergic stimulation of rat resistance arteries affects Ca2+ sparks, Ca2+ waves, and Ca2+ oscillations. Am J Physiol Heart Circ Physiol 280:H2399–H2405.  https://doi.org/10.1152/ajpheart.2001.280.5.H2399 PubMedCrossRefGoogle Scholar
  129. 129.
    McCartney CE, McClafferty H, Huibant JM, Rowan EG, Shipston MJ, Rowe IC (2005) A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel alpha-subunits. Proc Natl Acad Sci U S A 102:17870–17876.  https://doi.org/10.1073/pnas.0505270102 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    McGahon MK, Zhang X, Scholfield CN, Curtis TM, McGeown JG (2007) Selective downregulation of the BKbeta1 subunit in diabetic arteriolar myocytes. Channels (Austin) 1:141–143CrossRefGoogle Scholar
  131. 131.
    McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650PubMedCrossRefGoogle Scholar
  132. 132.
    McMillan JE, Bukiya AN, Terrell CL, Patil SA, Miller DD, Dopico AM, Parrill AL (2014) Multi-generational pharmacophore modeling for ligands to the cholane steroid-recognition site in the beta1 modulatory subunit of the BKCa channel. J Mol Graph Model 54:174–183.  https://doi.org/10.1016/j.jmgm.2014.10.008 PubMedCrossRefGoogle Scholar
  133. 133.
    Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc Natl Acad Sci U S A 94:14066–14071PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Minami K, Fukuzawa K, Nakaya Y (1993) Protein kinase C inhibits the Ca2+-activated K+ channel of cultured porcine coronary artery smooth muscle cells. Biochem Biophys Res Commun 190:263–269.  https://doi.org/10.1006/bbrc.1993.1040 PubMedCrossRefGoogle Scholar
  135. 135.
    Mistry DK, Garland CJ (1998) Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124:1131–1140.  https://doi.org/10.1038/sj.bjp.0701940 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Mladenov MI, Hristov KL, Dimitrova DZ, Schubert R, Lubomirov LT, Gjorgoski IK, Duridanova DB, Gagov HS (2008) Ghrelin signalling in guinea-pig femoral artery smooth muscle cells. Acta Physiol (Oxf) 194:195–206.  https://doi.org/10.1111/j.1748-1716.2008.01880.x CrossRefGoogle Scholar
  137. 137.
    Modgil A, Guo L, O'Rourke ST, Sun C (2013) Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism. PLoS One 8:e83051.  https://doi.org/10.1371/journal.pone.0083051 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Mori A, Suzuki S, Sakamoto K, Nakahara T, Ishii K (2011) Vasodilation of retinal arterioles induced by activation of BKCa channels is attenuated in diabetic rats. Eur J Pharmacol 669:94–99.  https://doi.org/10.1016/j.ejphar.2011.07.042 PubMedCrossRefGoogle Scholar
  139. 139.
    Morin C, Sirois M, Echave V, Rizcallah E, Rousseau E (2009) Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am J Physiol Lung Cell Mol Physiol 296:L130–L139.  https://doi.org/10.1152/ajplung.90436.2008 PubMedCrossRefGoogle Scholar
  140. 140.
    Natarajan A, Han G, Chen SY, Yu P, White R, Jose P (2010) The d5 dopamine receptor mediates large-conductance, calcium- and voltage-activated potassium channel activation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther 332:640–649.  https://doi.org/10.1124/jpet.109.159871 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637PubMedCrossRefGoogle Scholar
  142. 142.
    Nishimaru K, Eghbali M, Lu R, Marijic J, Stefani E, Toro L (2004) Functional and molecular evidence of MaxiK channel beta1 subunit decrease with coronary artery ageing in the rat. J Physiol 559:849–862.  https://doi.org/10.1113/jphysiol.2004.068676 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Nourian Z, Li M, Leo MD, Jaggar JH, Braun AP, Hill MA (2014) Large conductance Ca2+-activated K+ channel (BKCa) alpha-subunit splice variants in resistance arteries from rat cerebral and skeletal muscle vasculature. PLoS One 9:e98863.  https://doi.org/10.1371/journal.pone.0098863 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Pabbidi MR, Roman RJ (2017) Elevated K+ channel activity opposes vasoconstrictor response to serotonin in cerebral arteries of the fawn hooded hypertensive rat. Physiol Genomics 49:27–36.  https://doi.org/10.1152/physiolgenomics.00072.2016 PubMedCrossRefGoogle Scholar
  145. 145.
    Park JK, Kim YC, Sim JH, Choi MY, Choi W, Hwang KK, Cho MC, Kim KW, Lim SW, Lee SJ (2007) Regulation of membrane excitability by intracellular pH (pHi) changers through Ca2+-activated K+ current (BK channel) in single smooth muscle cells from rabbit basilar artery. Pflügers Arch 454:307–319.  https://doi.org/10.1007/s00424-007-0204-8 PubMedCrossRefGoogle Scholar
  146. 146.
    Park WS, Son YK, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Kang SH, Kim E, Earm YE, Han J (2007) Direct modulation of Ca2+-activated K+ current by H-89 in rabbit coronary arterial smooth muscle cells. Vasc Pharmacol 46:105–113.  https://doi.org/10.1016/j.vph.2006.08.413 CrossRefGoogle Scholar
  147. 147.
    Pérez GJ, Bonev AD, Patlak JB, Nelson MT (1999) Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol 113:229–238PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Pérez GJ, Bonev AD, Nelson MT (2001) Micromolar Ca2+ from sparks activates Ca2+-sensitive K+ channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol 281:C1769–C1775.  https://doi.org/10.1152/ajpcell.2001.281.6.C1769 PubMedCrossRefGoogle Scholar
  149. 149.
    Piao L, Ho WK, Earm YE (2003) Actin filaments regulate the stretch sensitivity of large-conductance, Ca2+-activated K+ channels in coronary artery smooth muscle cells. Pflügers Arch 446:523–528.  https://doi.org/10.1007/s00424-003-1079-y PubMedCrossRefGoogle Scholar
  150. 150.
    Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287.  https://doi.org/10.1016/j.neuron.2008.05.032 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O (2000) Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca2+ spark/STOC coupling and elevated blood pressure. Circ Res 87:E53–E60PubMedCrossRefGoogle Scholar
  152. 152.
    Pluznick JL, Wei P, Carmines PK, Sansom SC (2003) Renal fluid and electrolyte handling in BKCa-beta1−/− mice. Am J Physiol Renal Physiol 284:F1274–F1279.  https://doi.org/10.1152/ajprenal.00010.2003 PubMedCrossRefGoogle Scholar
  153. 153.
    Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT (1998) Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol 274:C1346–C1355PubMedCrossRefGoogle Scholar
  154. 154.
    Poulsen AN, Wulf H, Hay-Schmidt A, Jansen-Olesen I, Olesen J, Klaerke DA (2009) Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues. Biochim Biophys Acta 1788:380–389.  https://doi.org/10.1016/j.bbamem.2008.10.001 PubMedCrossRefGoogle Scholar
  155. 155.
    Pritchard HAT, Gonzales AL, Pires PW, Drumm BT, Ko EA, Sanders KM, Hennig GW, Earley S (2017) Microtubule structures underlying the sarcoplasmic reticulum support peripheral coupling sites to regulate smooth muscle contractility. Sci signal  https://doi.org/10.1126/scisignal.aan2694
  156. 156.
    Raingo J, Rebolledo A, Grassi de Gende AO, Sanz N, Tommasi J, Milesi V (2005) pH effects on high conductance Ca2+-activated K+ channels (BKCa) in human internal mammary artery smooth muscle cells. Life Sci 77:1993–2003.  https://doi.org/10.1016/j.lfs.2005.03.015 PubMedCrossRefGoogle Scholar
  157. 157.
    Roberts OL, Kamishima T, Barrett-Jolley R, Quayle JM, Dart C (2013) Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery. J Physiol 591:5107–5123.  https://doi.org/10.1113/jphysiol.2013.262006 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Robertson BE, Schubert R, Hescheler J, Nelson MT (1993) cGMP-dependent protein kinase activates ca-activated K channels in cerebral artery smooth muscle cells. Am J Phys 265:C299–C303.  https://doi.org/10.1152/ajpcell.1993.265.1.C299 CrossRefGoogle Scholar
  159. 159.
    Rosenfeld CR, Liu XT, DeSpain K (2009) Pregnancy modifies the large conductance Ca2+-activated K+ channel and cGMP-dependent signaling pathway in uterine vascular smooth muscle. Am J Physiol Heart Circ Physiol 296:H1878–H1887.  https://doi.org/10.1152/ajpheart.01185.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Sade H, Muraki K, Ohya S, Hatano N, Imaizumi Y (2006) Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. Am J Physiol Cell Physiol 290:C77–C86.  https://doi.org/10.1152/ajpcell.00482.2004 PubMedCrossRefGoogle Scholar
  161. 161.
    Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P (2005) Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112:60–68.  https://doi.org/10.1161/01.CIR.0000156448.74296.FE PubMedCrossRefGoogle Scholar
  162. 162.
    Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73:1355–1363.  https://doi.org/10.1016/S0006-3495(97)78168-2 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Schubert R, Nelson MT (2001) Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol Sci 22:505–512PubMedCrossRefGoogle Scholar
  164. 164.
    Schubert R, Noack T, Serebryakov VN (1999) Protein kinase C reduces the KCa current of rat tail artery smooth muscle cells. Am J Physiol 276:C648–C658PubMedCrossRefGoogle Scholar
  165. 165.
    Senti M, Fernández-Fernández JM, Tomas M, Vázquez E, Elosua R, Marrugat J, Valverde MA (2005) Protective effect of the KCNMB1 E65K genetic polymorphism against diastolic hypertension in aging women and its relevance to cardiovascular risk. Circ Res 97:1360–1365.  https://doi.org/10.1161/01.RES.0000196557.93717.95 PubMedCrossRefGoogle Scholar
  166. 166.
    Shi L, Liu B, Li N, Xue Z, Liu X (2013) Aerobic exercise increases BK(Ca) channel contribution to regulation of mesenteric arterial tone by upregulating beta1-subunit. Exp Physiol 98:326–336.  https://doi.org/10.1113/expphysiol.2012.066225 PubMedCrossRefGoogle Scholar
  167. 167.
    Shipston MJ, Tian L (2016) Posttranscriptional and posttranslational regulation of BK channels. Int Rev Neurobiol 128:91–126.  https://doi.org/10.1016/bs.irn.2016.02.012 PubMedCrossRefGoogle Scholar
  168. 168.
    Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM (2012) Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+− and voltage-gated K+ (BK) channels. J Biol Chem 287:20509–20521.  https://doi.org/10.1074/jbc.M112.356261 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Song Y, Simard JM (1995) Beta-adrenoceptor stimulation activates large-conductance Ca2+-activated K+ channels in smooth muscle cells from basilar artery of guinea pig. Pflügers Arch 430:984–993PubMedCrossRefGoogle Scholar
  170. 170.
    Strobaek D, Christophersen P, Dissing S, Olesen SP (1996) ATP activates K+ and Cl channels via purinoceptor-mediated release of Ca2+ in human coronary artery smooth muscle. Am J Phys 271:C1463–C1471.  https://doi.org/10.1152/ajpcell.1996.271.5.C1463 CrossRefGoogle Scholar
  171. 171.
    Taguchi K, Kaneko K, Kubo T (2000) Protein kinase C modulates Ca2+-activated K+ channels in cultured rat mesenteric artery smooth muscle cells. Biol Pharm Bull 23:1450–1454PubMedCrossRefGoogle Scholar
  172. 172.
    Tang XD, Garcia ML, Heinemann SH, Hoshi T (2004) Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing. Nat Struct Mol Biol 11:171–178.  https://doi.org/10.1038/nsmb725 PubMedCrossRefGoogle Scholar
  173. 173.
    Tang X, Qian LL, Wang RX, Yao Y, Dang SP, Wu Y, Wang W, Ji Y, Sun MQ, Xia DY, Liu XY, Zhang DM, Chai Q, Lu T (2017) Regulation of coronary arterial large conductance Ca2+-activated K+ channel protein expression and function by n-3 polyunsaturated fatty acids in diabetic rats. J Vasc Res 54:329–343.  https://doi.org/10.1159/000479870 PubMedCrossRefGoogle Scholar
  174. 174.
    Tao X, Lin MT, Thorington GU, Wilson SM, Longo LD, Hessinger DA (2015) Long-term hypoxia increases calcium affinity of BK channels in ovine fetal and adult cerebral artery smooth muscle. Am J Physiol Heart Circ Physiol 308:H707–H722.  https://doi.org/10.1152/ajpheart.00564.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Tao X, Hite RK, MacKinnon R (2017) Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541:46–51.  https://doi.org/10.1038/nature20608 PubMedCrossRefGoogle Scholar
  176. 176.
    Thengchaisri N, Kuo L (2003) Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol 285:H2255–H2263.  https://doi.org/10.1152/ajpheart.00487.2003 PubMedCrossRefGoogle Scholar
  177. 177.
    Thorpe RB, Hubbell MC, Silpanisong J, Williams JM, Pearce WJ (2017) Chronic hypoxia attenuates the vasodilator efficacy of protein kinase G in fetal and adult ovine cerebral arteries. Am J Physiol Heart Circ Physiol 313:H207–H219.  https://doi.org/10.1152/ajpheart.00480.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Tsuji T, Cook DA (1994) Origin of thromboxane-mediated constriction due to neuropeptides in canine basilar artery. Eur J Pharmacol 264:77–80PubMedCrossRefGoogle Scholar
  179. 179.
    Vaithianathan T, Bukiya A, Liu J, Liu P, Asuncion-Chin M, Fan Z, Dopico A (2008) Direct regulation of BK channels by phosphatidylinositol 4,5-bisphosphate as a novel signaling pathway. J Gen Physiol 132:13–28.  https://doi.org/10.1085/jgp.200709913 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R (1999) Acute activation of maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science 285:1929–1931PubMedCrossRefGoogle Scholar
  181. 181.
    Wang L, Sigworth FJ (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461:292–295.  https://doi.org/10.1038/nature08291 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Wang YW, Ding JP, Xia XM, Lingle CJ (2002) Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J Neurosci 22:1550–1561PubMedCrossRefGoogle Scholar
  183. 183.
    Wang W, Huang H, Hou D, Liu P, Wei H, Fu X, Niu W (2010) Mechanosensitivity of STREX-lacking BKCa channels in the colonic smooth muscle of the mouse. Am J Physiol Gastrointest Liver Physiol 299:G1231–G1240.  https://doi.org/10.1152/ajpgi.00268.2010 PubMedCrossRefGoogle Scholar
  184. 184.
    Wang RX, Chai Q, Lu T, Lee HC (2011) Activation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity. Cardiovasc Res 90:344–352.  https://doi.org/10.1093/cvr/cvq411 PubMedCrossRefGoogle Scholar
  185. 185.
    Wei EP, Kontos HA, Beckman JS (1996) Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Phys 271:H1262–H1266.  https://doi.org/10.1152/ajpheart.1996.271.3.H1262 CrossRefGoogle Scholar
  186. 186.
    White RE, Kryman JP, El-Mowafy AM, Han G, Carrier GO (2000) cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BKCa channel activity in coronary artery smooth muscle cells. Circ Res 86:897–905PubMedCrossRefGoogle Scholar
  187. 187.
    White RE, Han G, Maunz M, Dimitropoulou C, El-Mowafy AM, Barlow RS, Catravas JD, Snead C, Carrier GO, Zhu S, Yu X (2002) Endothelium-independent effect of estrogen on Ca2+-activated K+ channels in human coronary artery smooth muscle cells. Cardiovasc Res 53:650–661PubMedCrossRefGoogle Scholar
  188. 188.
    Wiecha J, Schlager B, Voisard R, Hannekum A, Mattfeldt T, Hombach V (1997) Ca2+-activated K+ channels in human smooth muscle cells of coronary atherosclerotic plaques and coronary media segments. Basic Res Cardiol 92:233–239PubMedCrossRefGoogle Scholar
  189. 189.
    Wu SN, Lin PH, Hsieh KS, Liu YC, Chiang HT (2003) Behavior of nonselective cation channels and large-conductance Ca2+-activated K+ channels induced by dynamic changes in membrane stretch in cultured smooth muscle cells of human coronary artery. J Cardiovasc Electrophysiol 14:44–51PubMedCrossRefGoogle Scholar
  190. 190.
    Wu X, Yang Y, Gui P, Sohma Y, Meininger GA, Davis GE, Braun AP, Davis MJ (2008) Potentiation of large conductance, Ca2+-activated K+ (BK) channels by alpha5beta1 integrin activation in arteriolar smooth muscle. J Physiol 586:1699–1713.  https://doi.org/10.1113/jphysiol.2007.149500 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Wu Y, Yang Y, Ye S, Jiang Y (2010) Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature 466:393–397.  https://doi.org/10.1038/nature09252 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Wu W, Wang Y, Deng XL, Sun HY, Li GR (2013) Cholesterol down-regulates BK channels stably expressed in HEK 293 cells. PLoS One 8:e79952.  https://doi.org/10.1371/journal.pone.0079952 PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884.  https://doi.org/10.1038/nature00956 PubMedCrossRefGoogle Scholar
  194. 194.
    Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446PubMedCrossRefGoogle Scholar
  195. 195.
    Xu H, Garver H, Fernandes R, Phelps JT, Harkema JJ, Galligan JJ, Fink GD (2015) BK channel beta1-subunit deficiency exacerbates vascular fibrosis and remodelling but does not promote hypertension in high-fat fed obesity in mice. J Hypertens 33:1611–1623.  https://doi.org/10.1097/HJH.0000000000000590 PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Yan J, Aldrich RW (2010) LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466:513–516.  https://doi.org/10.1038/nature09162 PubMedCrossRefGoogle Scholar
  197. 197.
    Yan J, Aldrich RW (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc Natl Acad Sci U S A 109:7917–7922.  https://doi.org/10.1073/pnas.1205435109 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Yan J, Chen R, Liu P, Gu Y (2014) Docosahexaenoic acid attenuates hypoxic pulmonary vasoconstriction by activating the large conductance Ca2+-activated K+ currents in pulmonary artery smooth muscle cells. Pulm Pharmacol Ther 28:9–16.  https://doi.org/10.1016/j.pupt.2013.11.004 PubMedCrossRefGoogle Scholar
  199. 199.
    Yang XR, Lin MJ, Yip KP, Jeyakumar LH, Fleischer S, Leung GP, Sham JS (2005) Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca2+ stores in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 289:L338–L348.  https://doi.org/10.1152/ajplung.00328.2004 PubMedCrossRefGoogle Scholar
  200. 200.
    Yang Y, Wu X, Gui P, Wu J, Sheng JZ, Ling S, Braun AP, Davis GE, Davis MJ (2010) Alpha5beta1 integrin engagement increases large conductance, Ca2+-activated K+ channel current and Ca2+ sensitivity through c-src-mediated channel phosphorylation. J Biol Chem 285:131–141.  https://doi.org/10.1074/jbc.M109.033506 PubMedCrossRefGoogle Scholar
  201. 201.
    Yang Y, Sohma Y, Nourian Z, Ella SR, Li M, Stupica A, Korthuis RJ, Davis MJ, Braun AP, Hill MA (2013) Mechanisms underlying regional differences in the Ca2+ sensitivity of BKCa current in arteriolar smooth muscle. J Physiol 591:1277–1293.  https://doi.org/10.1113/jphysiol.2012.241562 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Yu J, Zhu M, Fu Z, Zhu X, Zhao Y, Chen B (2010) Vasorelaxing action of vasonatrin peptide is associated with activation of large-conductance Ca2+-activated potassium channels in vascular smooth muscle cells. Physiol Res 59:187–194PubMedGoogle Scholar
  203. 203.
    Yu X, Ma H, Barman SA, Liu AT, Sellers M, Stallone JN, Prossnitz ER, White RE, Han G (2011) Activation of G protein-coupled estrogen receptor induces endothelium-independent relaxation of coronary artery smooth muscle. Am J Physiol Endocrinol Metab 301:E882–E888.  https://doi.org/10.1152/ajpendo.00037.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Yu W, Wang Y, Song Z, Zhao LM, Li GR, Deng XL (2016) Equol increases cerebral blood flow in rats via activation of large-conductance Ca2+-activated K+ channels in vascular smooth muscle cells. Pharmacol Res 107:186–194.  https://doi.org/10.1016/j.phrs.2016.03.015 PubMedCrossRefGoogle Scholar
  205. 205.
    Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 a resolution. Science 329:182–186.  https://doi.org/10.1126/science.1190414 PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Zarei MM, Zhu N, Alioua A, Eghbali M, Stefani E, Toro L (2001) A novel MaxiK splice variant exhibits dominant-negative properties for surface expression. J Biol Chem 276:16232–16239.  https://doi.org/10.1074/jbc.M008852200 PubMedCrossRefGoogle Scholar
  207. 207.
    Zhai X, Leo MD, Jaggar JH (2017) Endothelin-1 stimulates vasoconstriction through Rab11A serine 177 phosphorylation. Circ Res 121:650–661.  https://doi.org/10.1161/CIRCRESAHA.117.311102 PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Zhang X, Puil E, Mathers DA (1995) Effects of intracellular Mg2+ on the properties of large-conductance, Ca2+-dependent K+ channels in rat cerebrovascular smooth muscle cells. J Cereb Blood Flow Metab 15:1066–1074.  https://doi.org/10.1038/jcbfm.1995.133 PubMedCrossRefGoogle Scholar
  209. 209.
    Zhang Y, Oltman CL, Lu T, Lee HC, Dellsperger KC, VanRollins M (2001) EET homologs potently dilate coronary microvessels and activate BKCa channels. Am J Physiol Heart Circ Physiol 280:H2430–H2440.  https://doi.org/10.1152/ajpheart.2001.280.6.H2430 PubMedCrossRefGoogle Scholar
  210. 210.
    Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD (2012) H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 110:471–480.  https://doi.org/10.1161/CIRCRESAHA.111.258871 PubMedCrossRefGoogle Scholar
  211. 211.
    Zhang Z, Li M, Lu R, Alioua A, Stefani E, Toro L (2014) The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage- and Ca2+-activated K+ (BK) channels and inhibits their activity independent of G-protein activation. J Biol Chem 289:25678–25689.  https://doi.org/10.1074/jbc.M114.595603 PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Zhang Y, Chen Y, Zhang L, Lu N, Shi L (2017) Aerobic exercise of low to moderate intensity corrects unequal changes in BKCa subunit expression in the mesenteric arteries of spontaneously hypertensive rats. Physiol Res 66:219–233PubMedGoogle Scholar
  213. 213.
    Zhang Z, Wen Y, Du J, Yu Y, Liu S, Wu X, Zhao H (2018) Effects of mechanical stretch on the functions of BK and L-type Ca2+ channels in vascular smooth muscle cells. J Biomech 67:18–23.  https://doi.org/10.1016/j.jbiomech.2017.11.015 PubMedCrossRefGoogle Scholar
  214. 214.
    Zhao G, Adebiyi A, Xi Q, Jaggar JH (2007) Hypoxia reduces KCa channel activity by inducing Ca2+ spark uncoupling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 292:C2122–C2128.  https://doi.org/10.1152/ajpcell.00629.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Zhao G, Zhao Y, Pan B, Liu J, Huang X, Zhang X, Cao C, Hou N, Wu C, Zhao KS, Cheng H (2007) Hypersensitivity of BKCa to Ca2+ sparks underlies hyporeactivity of arterial smooth muscle in shock. Circ Res 101:493–502.  https://doi.org/10.1161/CIRCRESAHA.107.157271 PubMedCrossRefGoogle Scholar
  216. 216.
    Zhu S, Han G, White RE (2002) PGE2 action in human coronary artery smooth muscle: role of potassium channels and signaling cross-talk. J Vasc Res 39:477–488.  https://doi.org/10.1159/000067201 PubMedCrossRefGoogle Scholar
  217. 217.
    Zhu S, Browning DD, White RE, Fulton D, Barman SA (2009) Mutation of protein kinase C phosphorylation site S1076 on alpha-subunits affects BKCa channel activity in HEK-293 cells. Am J Physiol Lung Cell Mol Physiol 297:L758–L766.  https://doi.org/10.1152/ajplung.90518.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Zhu R, Xiao D, Zhang L (2013) Potassium channels and uterine vascular adaptation to pregnancy and chronic hypoxia. Curr Vasc Pharmacol 11:737–747PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Zhu Y, Ye P, Chen SL, Zhang DM (2018) Functional regulation of large conductance Ca2+-activated K+ channels in vascular diseases. Metabolism  https://doi.org/10.1016/j.metabol.2018.01.008

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology, College of MedicineThe University of Tennessee Health Science CenterMemphisUSA
  2. 2.Department of Physiology, College of MedicineThe University of Tennessee Health Science CenterMemphisUSA

Personalised recommendations