Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 8, pp 1221–1230 | Cite as

Methylmercury reduces synaptic transmission and neuronal excitability in rat hippocampal slices

  • J. Gutiérrez
  • A. M. Baraibar
  • E. Albiñana
  • P. Velasco
  • J. M. Solís
  • J. M. Hernández-GuijoEmail author
Ion channels, receptors and transporters
Part of the following topical collections:
  1. Ion channels, receptors and transporters


In a previous study, we pointed out that the neurotoxic action evoked by methylmercury (MeHg), a potent environmental pollutant responsible for fatal food poisoning, is associated with alterations of cellular excitability by irreversible blockade of sodium and calcium currents. Here, we investigated the MeHg effects on synaptic transmission and neuronal plasticity using extracellular field recording in CA1 area of rat hippocampal slices. MeHg caused a fast and drastic depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner with an IC50 of 25.7 μM. This depression was partially caused by the irreversible reduction of axon recruitment deduced from the decrement of the fiber volley (FV) amplitude. Nevertheless, this MeHg-induced synaptic depression represents a true reduction of synaptic efficacy, as judged by input/output curves. In addition, a reduction on presynaptic release of glutamate was detected with the paradigm of paired-pulse facilitation during MeHg application. Moreover, MeHg also reduced population spike (PS) ampxlitude, and this effect was more prominent when the PS was evoked by ortodromic stimulation than by antidromic stimulation. Interestingly, despite these strong effects of MeHg on synaptic transmission and excitability, this compound did not modify the induction of long-term synaptic potentiation (LTP). The effects described here for MeHg were irreversible or very slowly reversible after drug wash-out. In summary, the blockade of sodium and calcium channels by MeHg affects synaptic transmission and cellular excitability but not synaptic plasticity.


Synaptic transmission fEPSP Population spikes Hippocampal slices Methylmercury Intrinsic excitability 



G.J. is a fellow of MEC. E.A. is a fellow of FTH. The authors gratefully acknowledge the technical assistance of José Barbado.


  1. 1.
    Andersen P (1960) Interhippocampal impulses. 2. Apical dendritic activation of CAL neurons. AFOSR TN United States Air Force Off Sci Res 59:998–991PubMedGoogle Scholar
  2. 2.
    Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev 14(2):169–176CrossRefPubMedGoogle Scholar
  3. 3.
    Atchison WD (2005) Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Trends Pharmacol Sci 26(11):549–557CrossRefPubMedGoogle Scholar
  4. 4.
    Atchison WD, Hare MF (1994) Mechanisms of methylmercury-induced neurotoxicity. FASEB J 8(9):622–629CrossRefPubMedGoogle Scholar
  5. 5.
    Atchison WD, Narahashi T (1982) Methylmercury-induced depression of neuromuscular transmission in the rat. Neurotoxicology 3(3):37–50PubMedGoogle Scholar
  6. 6.
    Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, al-Rawi NY, Tikriti S, Dhahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methylmercury poisoning in Iraq. Science 181(4096):230–241CrossRefPubMedGoogle Scholar
  7. 7.
    Baldelli P, Forni PE, Carbone E (2000) BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neurons. Eur J Neurosci 12(11):4017–4032CrossRefPubMedGoogle Scholar
  8. 8.
    Bliss T, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Burgoyne RD, Alvarez de Toledo G (2000) Fusion proteins and fusion pores. Workshop: regulated exocytosis and the vesicle cycle. EMBO Rep 1(4):304–307CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carocci A1, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol 229:1–18PubMedGoogle Scholar
  11. 11.
    Eyl TB (1971) Organic-mercury food poisoning. N Engl J Med 284(13):706–709CrossRefPubMedGoogle Scholar
  12. 12.
    Falluel-Morel A, Lin L, Sokolowski K, McCandlish E, Buckley B, DiCicco-Bloom E (2012) N-Acetyl cysteine treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus. J Neurosci Res 90(4):743–750CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fountain SB, Rowan JD (2000) Effects of sequential exposure to multiple concentrations of methylmercury in the rat hippocampal slice. Ecotox Environ Safe 47(2):130–136CrossRefGoogle Scholar
  14. 14.
    Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy ACD, Marques MR, Dafre AL, Farina M (2009) Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 47(4):449–457CrossRefPubMedGoogle Scholar
  15. 15.
    Friberg L, Mottet NK (1989) Accumulation of methylmercury and inorganic mercury in the brain. Biol Trace Elem Res 21:201–206CrossRefPubMedGoogle Scholar
  16. 16.
    Fuentes-Antras J, Osorio-Martinez E, Ramirez-Torres M, Colmena I, Fernandez-Morales JC, Hernandez-Guijo JM (2013) Methylmercury decreases cellular excitability by a direct blockade of sodium and calcium channels in bovine chromaffin cells: an integrative study. Pflugers Arch 465(12):1727–1740CrossRefPubMedGoogle Scholar
  17. 17.
    Hajela RK, Peng SQ, Atchison WD (2003) Comparative effects of methylmercury and Hg(2+) on human neuronal N- and R-type high-voltage activated calcium channels transiently expressed in human embryonic kidney 293 cells. J Pharmacol Exp Ther 306(3):1129–1136CrossRefPubMedGoogle Scholar
  18. 18.
    Hess G, Kuhnt U (1992) Presynaptic calcium transients evoked by paired-pulse stimulation in the hippocampal slice. Neuroreport 3(4):361–364CrossRefPubMedGoogle Scholar
  19. 19.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195(2):481–492CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Leonhardt R, Haas H, Büsselberg D (1996) Methyl mercury reduces voltage-activated currents of rat dorsal root ganglion neurons. Naunyn Schmiedeberg’s Arch Pharmacol 354(4):532–538Google Scholar
  22. 22.
    Leonhardt R, Pekel M, Platt B, Haas HL, Busselberg D (1996) Voltage-activated calcium channel currents of rat DRG neurons are reduced by mercuric chloride (HgCl2) and methylmercury (CH3HgCl). Neurotoxicology 17(1):85–92PubMedGoogle Scholar
  23. 23.
    Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70(4):1451–1459CrossRefPubMedGoogle Scholar
  24. 24.
    Mancini JD, Autio DM, Atchison WD (2009) Continuous exposure to low concentrations of methylmercury impairs cerebellar granule cell migration in organotypic slice culture. Neurotoxicology 30(2):203–208CrossRefPubMedGoogle Scholar
  25. 25.
    Merad-Boudia M, Nicole A, Santiard-Baron D, Saillé C, Ceballos-Picot I (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease. Biochem Pharmacol 56(5):645–655CrossRefPubMedGoogle Scholar
  26. 26.
    Myers GJ, Davidson PW (1998) Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect 106(Suppl 3):841–847CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ochi T (2002) Methylmercury, but not inorganic mercury, causes abnormality of centrosome integrity (multiple foci of gamma-tubulin), multipolar spindles and multinucleated cells without microtubule disruption in cultured Chinese hamster V79 cells. Toxicology 175(1–3):111–121CrossRefPubMedGoogle Scholar
  28. 28.
    Peng S, Hajela RK, Atchison WD (2002) Effects of methylmercury on human neuronal L-type calcium channels transiently expressed in human embryonic kidney cells (HEK-293). J Pharmacol Exp Ther 302(2):424–432CrossRefPubMedGoogle Scholar
  29. 29.
    Protti DA, Uchitel OD (1993) Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin omega-Aga-IVA. Neuroreport 5(3):333–336CrossRefPubMedGoogle Scholar
  30. 30.
    Quandt FN, Kato E, Narahashi T (1982) Effects of methylmercury on electrical responses of neuroblastoma cells. Neurotoxicology 3(4):205–220PubMedGoogle Scholar
  31. 31.
    Raastad M, Shepherd GM (2003) Single-axon action potentials in the rat hippocampal cortex. J Physiol 548(Pt 3):745–752CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rao MV, Purohit A, Patel T (2010) Melatonin protection on mercury-exerted brain toxicity in the rat. Drug Chem Toxicol 33(2):209–216CrossRefPubMedGoogle Scholar
  33. 33.
    Roda E, Coccini T, Acerbi D, Castoldi A, Bernocchi G, Manzo L (2008) Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat. J Chem Neuroanat 35(3):285–294CrossRefPubMedGoogle Scholar
  34. 34.
    Sakaue M, Mori N, Makita M, Fujishima K, Hara S, Arishima K, Yamamoto M (2009) Acceleration of methylmercury-induced cell death of rat cerebellar neurons by brain-derived neurotrophic factor in vitro. Brain Res 1273:155–162CrossRefPubMedGoogle Scholar
  35. 35.
    Sarafian T, Verity MA (1991) Oxidative mechanisms underlying methyl mercury neurotoxicity. Int J Dev Neurosci 9(2):147–153CrossRefPubMedGoogle Scholar
  36. 36.
    Shafer TJ, Atchison WD (1992) Effects of methylmercury on perineurial Na+ and Ca2+-dependent potentials at neuromuscular junctions of the mouse. Brain Res 595(2):215–219CrossRefPubMedGoogle Scholar
  37. 37.
    Sirois JE, Atchison WD (2000) Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells. Toxicol Appl Pharmacol 167(1):1–11CrossRefPubMedGoogle Scholar
  38. 38.
    Szucs A, Angiello C, Salanki J, Carpenter DO (1997) Effects of inorganic mercury and methylmercury on the ionic currents of cultured rat hippocampal neurons. Cell Mol Neurobiol 17(3):273–288CrossRefPubMedGoogle Scholar
  39. 39.
    Takahashi T, Momiyama A (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366(6451):156–158CrossRefPubMedGoogle Scholar
  40. 40.
    Takeuchi T (1982) Pathology of Minamata disease. With special reference to its pathogenesis. Acta Pathol Jpn 32(Suppl 1):73–99PubMedGoogle Scholar
  41. 41.
    Yuan Y, Atchison WD (1993) Disruption by methylmercury of membrane excitability and synaptic transmission of CA1 neurons in hippocampal slices of the rat. Toxicol Appl Pharmacol 120(2):203–215CrossRefPubMedGoogle Scholar
  42. 42.
    Yuan Y, Atchison WD (1995) Methylmercury acts at multiple sites to block hippocampal synaptic transmission. J Pharmacol Exp Ther 275(3):1308–1316PubMedGoogle Scholar
  43. 43.
    Yuan Y, Atchison WD (1997) Action of methylmercury on GABA(A) receptor-mediated inhibitory synaptic transmission is primarily responsible for its early stimulatory effects on hippocampal CA1 excitatory synaptic transmission. J Pharmacol Exp Ther 282(1):64–73PubMedGoogle Scholar
  44. 44.
    Yuan Y, Atchison WD (2007) Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices. Mol Pharmacol 71(4):1109–1121CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. Gutiérrez
    • 1
    • 2
  • A. M. Baraibar
    • 1
    • 2
  • E. Albiñana
    • 1
    • 2
  • P. Velasco
    • 1
  • J. M. Solís
    • 3
  • J. M. Hernández-Guijo
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology and TherapeuticUniversidad Autónoma de Madrid, IRYCISMadridSpain
  2. 2.Instituto Teófilo Hernando, Facultad de Medicina, Departamento de FarmacologíaUniversidad Autónoma de Madrid, IRYCISMadridSpain
  3. 3.Servicio de Neurobiología-InvestigaciónHospital Universitario Ramón y Cajal, IRYCISMadridSpain

Personalised recommendations