Internalization of NKCC2 is impaired in thick ascending limb of Henle in moesin knockout mice

  • Kotoku Kawaguchi
  • Ryo Hatano
  • Mitsunobu Matsubara
  • Shinji Asano
Ion channels, receptors and transporters
Part of the following topical collections:
  1. Ion channels, receptors and transporters


Moesin is expressed in several types of cells including epithelial and endothelial cells. Several groups reported that moesin plays important roles in the regulation of the cellular motility, and the process of internalization of membrane proteins. However, the physiological roles of moesin in the kidney still remain unclear. Herein, we examined the physiological function of moesin in the kidney using moesin knockout (Msn −/y ) mice. There was no obvious abnormality in the renal morphology of Msn −/y mice. However, we found that Msn −/y mice exhibited mild hyperchloremia, and reduced glomerular filtration rate compared to wild type (WT) mice. Absolute electrolytes excretions of NaCl in Msn −/y mice were not significantly changed compared to WT mice. In the renal medulla, moesin was detected in thick ascending limb of Henle (TALH) as previously reported. To determine the physiological function of moesin in TALH, we examined the expression and subcellular localization of NKCC2 in Msn −/y mice. Interestingly, apical surface expression level, but not total expression of NKCC2 was increased in Msn −/y mice. Subcellular fractionation of renal medulla lysate and internalization assay using tubular suspension showed that the process of NKCC2 endocytosis is impaired. Since the distribution of NKCC2 in lipid raft fractions was decreased in Msn −/y mice, moesin may regulate the NKCC2 distribution to microdomain. These results suggest that moesin regulates the internalization of NKCC2. Furthermore, euhydration by water loading caused hyponatremina in Msn −/y mice, suggesting that dysfunction of moesin is associated with the nephrogenic syndrome of inappropriate antidiuresis (NSIAD).


Cytoskeleton Endocytosis Mineral metabolism Renal physiology 



Sodium-potassium-chloride co-transporter 2




Thick ascending limb of Henle



We thank Professor Sachiko Tsukita and Dr. Atsushi Tamura for Msn -/y mice.


This research was supported in part by a Grant-in-Aid for Scientific research (25860693) from the Ministry of Education, Culture, Sports, Science and Technology of Japan to RH, the Salt Science Research Foundation, no.1320 to RH, and MEXT-supported Program for the Strategic Research Foundation at Private Universities to SA and RH.

Compliance with ethical standards

Conflict of interest

All the authors declared no competing interests.

Supplementary material

424_2018_2134_MOESM1_ESM.docx (79 kb)
ESM 1 (DOCX 78 kb)
424_2018_2134_MOESM2_ESM.pptx (73.4 mb)
ESM 2 (PPTX 75182 kb)


  1. 1.
    Adyshev DM, Dudek SM, Moldobaeva N, Kim KM, Ma SF, Kasa A, Garcia JG, Verin AD (2013) Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am J Physiol Lung Cell Mol Physiol 305(3):L240–L255. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alvarez-Guerra M, Garay RP (2002) Renal Na-K-Cl cotransporter NKCC2 in Dahl salt-sensitive rats. J Hypertens 20(4):721–727CrossRefPubMedGoogle Scholar
  3. 3.
    Araujo M, Welch WJ (2009) Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide. Am J Physiol Renal Physiol 296(4):F790–F794. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ares GR, Ortiz PA (2010) Constitutive endocytosis and recycling of NKCC2 in rat thick ascending limbs. Am J Physiol Renal Physiol. 299(5):F1193–F1202. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ares GR, Ortiz PA (2012) Dynamin2, clathrin, and lipid rafts mediate endocytosis of the apical Na/K/2Cl cotransporter NKCC2 in thick ascending limbs. J Biol Chem 287(45):37824–37834. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol. 301(6):F1143–F1159. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barroso-González J, Machado JD, García-Expósito L, Valenzuela-Fernández A (2009) Moesin regulates the trafficking of nascent clathrin-coated vesicles. J Biol Chem 284(4):2419–2434. CrossRefPubMedGoogle Scholar
  8. 8.
    Carmosino M, Rizzo F, Procino G, Zolla L, Timperio AM, Basco D, Barbieri C, Torretta S, Svelto M (2012) Identification of moesin as NKCC2-interacting protein and analysis of its functional role in the NKCC2 apical trafficking. Biol Cell 104(11):658–676. CrossRefPubMedGoogle Scholar
  9. 9.
    Carmosino M, Rizzo F, Torretta S, Procino G, Svelto M (2013) High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biol 14:16. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Casaletto JB, Saotome I, Curto M, McClatchey AI (2011) Ezrin-mediated apical integrity is required for intestinal homeostasis. Proc Natl Acad Sci U S A 108(29):11924–11929. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen YX, Li Y, Wang WM, Zhang W, Chen XN, Xie YY, Lu J, Huang QH, Chen N (2010) Phosphoproteomic study of human tubular epithelial cell in response to transforming growth factor-beta-1-induced epithelial-to-mesenchymal transition. Am J Nephrol 31(1):24–35. CrossRefPubMedGoogle Scholar
  12. 12.
    Doi Y, Itoh M, Yonemura S, Ishihara S, Takano H, Noda T, Tsukita S (1999) Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J Biol Chem 274(4):2315–2321CrossRefPubMedGoogle Scholar
  13. 13.
    Fehon RG, McClatchey AI, Bretscher A (2010) Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 11(4):276–287. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Feldman BJ, Rosenthal SM, Vargas GA, Fenwick RG, Huang EA, Matsuda-Abedini M, Lustig RH, Mathias RS, Portale AA, Miller WL, Gitelman SE (2005) Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med 352:1884–1890CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hashimoto S, Amaya F, Matsuyama H, Ueno H, Kikuchi S, Tanaka M, Watanabe Y, Ebina M, Ishizaka A, Tsukita S, Hashimoto S (2008) Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin. Am J Physiol Lung Cell Mol Physiol. 295(4):L566–L574. CrossRefPubMedGoogle Scholar
  16. 16.
    Hatano R, Fujii E, Segawa H, Mukaisho K, Matsubara M, Miyamoto K, Hattori T, Sugihara H, Asano S (2013) Ezrin, a membrane cytoskeletal cross-linker, is essential for the regulation of phosphate and calcium homeostasis. Kidney Int 83(1):41–49. CrossRefPubMedGoogle Scholar
  17. 17.
    Hirata T, Nomachi A, Tohya K, Miyasaka M, Tsukita S, Watanabe T, Narumiya S (2012) Moesin-deficient mice reveal a non-redundant role for moesin in lymphocyte homeostasis. Int Immunol 24(11):705–717. CrossRefPubMedGoogle Scholar
  18. 18.
    Hugo C, Hugo C, Pichler R, Gordon K, Schmidt R, Amieva M, Couser WG, Furthmayr H, Johnson RJ (1996) The cytoskeletal linking proteins, moesin and radixin, are upregulated by platelet-derived growth factor, but not basic fibroblast growth factor in experimental mesangial proliferative glomerulonephritis. J Clin Invest 97(11):2499–2508CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M (2006) Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene 25:7117–7130CrossRefPubMedGoogle Scholar
  20. 20.
    Kazama I, Hatano R, Michimata M, Suzuki K, Arata T, Suzuki M, Miyama N, Sato A, Satomi S, Ejima Y, Sasaki S, Matsubara M (2005) BSC1 inhibition complements effects of vasopressin V2 receptor antagonist on hyponatremia in SIADH rats. Kidney Int 67(5):1855–1867CrossRefPubMedGoogle Scholar
  21. 21.
    Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T, Tamura A, Yonemura S, Yamagishi H, Keppler D, Tsukita S, Tsukita S (2002) Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet 31(3):320–325CrossRefPubMedGoogle Scholar
  22. 22.
    Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4(3):191–197CrossRefPubMedGoogle Scholar
  23. 23.
    Liu X, Yang T, Suzuki K, Tsukita S, Ishii M, Zhou S, Wang G, Cao L, Qian F, Taylor S, Oh MJ, Levitan I, Ye RD, Carnegie GK, Zhao Y, Malik AB, Xu J (2015) Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient. J Exp Med 212(2):267–280. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nomachi A, Yoshinaga M, Liu J, Kanchanawong P, Tohyama K, Thumkeo D, Watanabe T, Narumiya S, Hirata T (2013) Moesin controls clathrin-mediated S1PR1 internalization in T cells. PLoS One 8(12):e82590. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ortiz PA (2006) cAMP increases surface expression of NKCC2 in rat thick ascending limbs: role of VAMP. Am J Physiol Renal Physiol 290:F608–F616CrossRefPubMedGoogle Scholar
  26. 26.
    Qi Z, Breyer MD (2009) Measurement of glomerular filtration rate in conscious mice. Methods Mol Biol 466:61–72CrossRefPubMedGoogle Scholar
  27. 27.
    Sultan A, Luo M, Yu Q, Riederer B, Xia W, Chen M, Lissner S, Gessner JE, Donowitz M, Yun CC, deJonge H, Lamprecht G, Seidler U (2013) Differential association of the Na+/H+ exchanger regulatory factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3. Cell Physiol Biochem 32(5):1386–1402CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Suzuki K, Suzuki K, Nagao T, Nakayama T (2013) Proposal of anti-moesin as a novel biomarker for ANCA-associated vasculitis. Clin Exp Nephrol 17(5):638–641. CrossRefPubMedGoogle Scholar
  29. 29.
    Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci U S A 97(10):5434–5439CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Physiology, College of Pharmaceutical SciencesRitsumeikan UniversityKusatsu CityJapan
  2. 2.Division of Molecular Medicine, Center for Translational and Advanced Animal ResearchTohoku University Graduate School of MedicineSendaiChina

Personalised recommendations