The role of the circadian clock system in physiology

Abstract

Life on earth is shaped by the 24-h rotation of our planet around its axes. To adapt behavior and physiology to the concurring profound but highly predictable changes, endogenous circadian clocks have evolved that drive 24-h rhythms in invertebrate and vertebrate species. At the molecular level, circadian clocks comprised a set of clock genes organized in a system of interlocked transcriptional–translational feedback loops. A ubiquitous network of cellular central and peripheral tissue clocks coordinates physiological functions along the day through activation of tissue-specific transcriptional programs. Circadian rhythms impact on diverse physiological processes including the cardiovascular system, energy metabolism, immunity, hormone secretion, and reproduction. This review summarizes our current understanding of the mechanisms of circadian timekeeping in different species, its adaptation by external timing signals and the pathophysiological consequences of circadian disruption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Alamilla J, Granados-Fuentes D, Aguilar-Roblero R (2015) The anterior paraventricular thalamus modulates neuronal excitability in the suprachiasmatic nuclei of the rat. Eur J Neurosci 42:2833–2842. https://doi.org/10.1111/ejn.13088

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Alibhai FJ, Tsimakouridze EV, Reitz CJ, Pyle WG, Martino TA (2015) Consequences of circadian and sleep disturbances for the cardiovascular system. Can J Cardiol 31:860–872. https://doi.org/10.1016/j.cjca.2015.01.015

    PubMed  Article  Google Scholar 

  3. 3.

    Allada R, Chung BY (2010) Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72:605–624. https://doi.org/10.1146/annurev-physiol-021909-135815

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Allada R, White NE, So WV, Hall JC, Rosbash M (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Andrews RC, Walker BR (1999) Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond) 96:513–523

    CAS  Article  Google Scholar 

  6. 6.

    Arjona A, Sarkar DK (2008) Are circadian rhythms the code of hypothalamic-immune communication? Insights from natural killer cells. Neurochem Res 33:708–718. https://doi.org/10.1007/s11064-007-9501-z

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Avram AM, Jaffe CA, Symons KV, Barkan AL (2005) Endogenous circulating ghrelin does not mediate growth hormone rhythmicity or response to fasting. J Clin Endocrinol Metab 90:2982–2987. https://doi.org/10.1210/jc.2004-1785

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10:1291–1294

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354. https://doi.org/10.1126/science.1195027

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Batsis JA, Nieto-Martinez RE, Lopez-Jimenez F (2007) Metabolic syndrome: from global epidemiology to individualized medicine. Clin Pharmacol Ther 82:509–524. https://doi.org/10.1038/sj.clpt.6100355

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci U S A 99:2134–2139. https://doi.org/10.1073/pnas.032426699

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073. https://doi.org/10.1126/science.1067262

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bethea CL, Neill JD (1980) Lesions of the suprachiasmatic nuclei abolish the cervically stimulated prolactin surges in the rat. Endocrinology 107:1–5. https://doi.org/10.1210/endo-107-1-1

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Blake CA (1976) Effects of intravenous infusion of catecholamines on rat plasma luteinizing hormone and prolactin concentrations. Endocrinology 98:99–104. https://doi.org/10.1210/endo-98-1-99

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Blau J, Young MW (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99:661–671

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Blaustein JD, Tetel MJ, Ricciardi KH, Delville Y, Turcotte JC (1994) Hypothalamic ovarian steroid hormone-sensitive neurons involved in female sexual behavior. Psychoneuroendocrinology 19:505–516

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ (2010) Reproductive biology of female Bmal1 null mice. Reproduction 139:1077–1090. https://doi.org/10.1530/REP-09-0523

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W (2011) Circadian clocks in mouse and human CD4+ T cells. PLoS One 6:e29801. https://doi.org/10.1371/journal.pone.0029801

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM, Durgan DJ, Jeong WJ, Tsai JY, Bugger H, Zhang D, Rohrwasser A, Rennison JH, Dyck JR, Litwin SE, Hardin PE, Chow CW, Chandler MP, Abel ED, Young ME (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294:H1036–H1047. https://doi.org/10.1152/ajpheart.01291.2007

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Brown TM, Gias C, Hatori M, Keding SR, Semo M, Coffey PJ, Gigg J, Piggins HD, Panda S, Lucas RJ (2010) Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol 8(12):e1000558. https://doi.org/10.1371/journal.pbio.1000558

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Brown TM, Wynne J, Piggins HD, Lucas RJ (2011) Multiple hypothalamic cell populations encoding distinct visual information. J Physiol 589:1173–1194. https://doi.org/10.1113/jphysiol.2010.199877

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 217:3–27. https://doi.org/10.1007/978-3-642-25950-0_1

  23. 23.

    Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2:521–526. https://doi.org/10.1038/35081582

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Caligioni CS, Oliver C, Jamur MC, Franci CR (2007) Presence of oxytocin receptors in the gonadotrophin-releasing hormone (GnRH) neurones in female rats: a possible direct action of oxytocin on GnRH neurones. J Neuroendocrinol 19:439–448. https://doi.org/10.1111/j.1365-2826.2007.01550.x

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Carroll T, Raff H, Findling JW (2008) Late-night salivary cortisol measurement in the diagnosis of Cushing’s syndrome. Nat Clin Pract Endocrinol Metab 4:344–350. https://doi.org/10.1038/ncpendmet0837

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Carvas JM, Vukolic A, Yepuri G, Xiong Y, Popp K, Schmutz I, Chappuis S, Albrecht U, Ming XF, Montani JP, Yang Z (2012) Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front Physiol 3:337. https://doi.org/10.3389/fphys.2012.00337

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Chang DC, McWatters HG, Williams JA, Gotter AL, Levine JD, Reppert SM (2003) Constructing a feedback loop with circadian clock molecules from the silkmoth, Antheraea pernyi. J Biol Chem 278:38149–38158. https://doi.org/10.1074/jbc.M306937200

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Chen H, Zhao L, Kumazawa M, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA (2013) Downregulation of core clock gene Bmal1 attenuates expression of progesterone and prostaglandin biosynthesis-related genes in rat luteinizing granulosa cells. Am J Physiol Cell Physiol 304:C1131–C1140. https://doi.org/10.1152/ajpcell.00008.2013

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Chen L, Yang G (2015) Recent advances in circadian rhythms in cardiovascular system. Front Pharmacol 6:71. https://doi.org/10.3389/fphar.2015.00071

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Christiansen JJ, Djurhuus CB, Gravholt CH, Iversen P, Christiansen JS, Schmitz O, Weeke J, Jorgensen JO, Moller N (2007) Effects of cortisol on carbohydrate, lipid, and protein metabolism: studies of acute cortisol withdrawal in adrenocortical failure. J Clin Endocrinol Metab 92:3553–3559. https://doi.org/10.1210/jc.2007-0445

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Collins B, Mazzoni EO, Stanewsky R, Blau J (2006) Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr Biol 16:441–449. https://doi.org/10.1016/j.cub.2006.01.034

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Coogan AN, Wyse CA (2008) Neuroimmunology of the circadian clock. Brain Res 1232:104–112. https://doi.org/10.1016/j.brainres.2008.07.087

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH (2008) The metabolic syndrome. Endocr Rev 29:777–822. https://doi.org/10.1210/er.2008-0024

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Correa A, Lewis ZA, Greene AV, March IJ, Gomer RH, Bell-Pedersen D (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci U S A 100:13597–13602. https://doi.org/10.1073/pnas.2233734100

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Daan S (1977) Tonic and phasic effects of light in the entrainment of circadian rhythms. Ann N Y Acad Sci 290:51–59

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Dallmann R, Touma C, Palme R, Albrecht U, Steinlechner S (2006) Impaired daily glucocorticoid rhythm in Per1 (Brd) mice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:769–775. https://doi.org/10.1007/s00359-006-0114-9

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    de la Iglesia HO, Meyer J, Schwartz WJ (2003) Lateralization of circadian pacemaker output: activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J Neurosci 23:7412–7414

    PubMed  Google Scholar 

  39. 39.

    Decoursey PJ (1960) Phase control of activity in a rodent. Cold Spring Harb Symp Quant Biol 25(0):49–55. https://doi.org/10.1101/SQB.1960.025.01.006

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Delezie J, Dumont S, Dardente H, Oudart H, Grechez-Cassiau A, Klosen P, Teboul M, Delaunay F, Pevet P, Challet E (2012) The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J 26:3321–3335. https://doi.org/10.1096/fj.12-208751

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    DiAngelo JR, Erion R, Crocker A, Sehgal A (2011) The central clock neurons regulate lipid storage in Drosophila. PLoS One 6:e19921. https://doi.org/10.1371/journal.pone.0019921

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549. https://doi.org/10.1146/annurev-physiol-021909-135821

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200:3–22. https://doi.org/10.1677/JOE-08-0415

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T (2009) Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113:5134–5143. https://doi.org/10.1182/blood-2008-11-190769

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Dunlap JC, Loros JJ, Liu Y, Crosthwaite SK (1999) Eukaryotic circadian systems: cycles in common. Genes Cells 4:1–10

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael LH, Chow CW, Dyck JR, Young ME (2010) Short communication: ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res 106:546–550. https://doi.org/10.1161/CIRCRESAHA.109.209346

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Durgan DJ, Young ME (2010) The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 106:647–658. https://doi.org/10.1161/CIRCRESAHA.109.209957

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428. https://doi.org/10.1016/S0140-6736(05)66378-7

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Egli M, Bertram R, Sellix MT, Freeman ME (2004) Rhythmic secretion of prolactin in rats: action of oxytocin coordinated by vasoactive intestinal polypeptide of suprachiasmatic nucleus origin. Endocrinology 145:3386–3394. https://doi.org/10.1210/en.2003-1710

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Etchegaray JP, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, EA Y, Reppert SM, Weaver DR (2009) Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol Cell Biol 29:3853–3866. https://doi.org/10.1128/MCB.00338-09

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Filipski E, Li XM, Levi F (2006) Disruption of circadian coordination and malignant growth. Cancer Causes Control 17:509–514. https://doi.org/10.1007/s10552-005-9007-4

    PubMed  Article  Google Scholar 

  52. 52.

    Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A 107:18664–18669. https://doi.org/10.1073/pnas.1008734107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Fuchikawa T, Beer K, Linke-Winnebeck C, Ben-David R, Kotowoy A, Tsang VWK, Warman GR, Winnebeck EC, Helfrich-Forster C, Bloch G (2017) Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open Biol 7:170047. https://doi.org/10.1098/rsob.170047

  55. 55.

    Gamble KL, Berry R, Frank SJ, Young ME (2014) Circadian clock control of endocrine factors. Nat Rev Endocrinol 10:466–475. https://doi.org/10.1038/nrendo.2014.78

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, Farrow S, DeMayo F, Hussell T, Worthen GS, Ray D, Loudon A (2014) An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 20:919–926. https://doi.org/10.1038/nm.3599

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon AS (2012) The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 109:582–587. https://doi.org/10.1073/pnas.1106750109

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Giebultowicz JM (2001) Peripheral clocks and their role in circadian timing: insights from insects. Philos Trans R Soc Lond Ser B Biol Sci 356:1791–1799. https://doi.org/10.1098/rstb.2001.0960

    CAS  Article  Google Scholar 

  59. 59.

    Giebultowicz JM, Hege DM (1997) Circadian clock in Malpighian tubules. Nature 386(6626):664. https://doi.org/10.1038/386664a0

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Giebultowicz JM, Stanewsky R, Hall JC, Hege DM (2000) Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr Biol 10:107–110

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Gnocchi D, Bruscalupi G (2017) Circadian rhythms and hormonal homeostasis: pathophysiological implications. Biology (Basel) 6:E10. https://doi.org/10.3390/biology6010010

  62. 62.

    Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106

    CAS  PubMed  Google Scholar 

  63. 63.

    Green RM, Tobin EM (2002) The role of CCA1 and LHY in the plant circadian clock. Dev Cell 2:516–518

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Grimaldi D, Carter JR, Van Cauter E, Leproult R (2016) Adverse impact of sleep restriction and circadian misalignment on autonomic function in healthy young adults. Hypertension 68:243–250. https://doi.org/10.1161/HYPERTENSIONAHA.115.06847

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Hall JC (1998) Genetics of biological rhythms in Drosophila. Adv Genet 38:135–184

    CAS  PubMed  Google Scholar 

  66. 66.

    Hamblen-Coyle MJ, Wheeler DA, Rutila JE, Rosbash M, HJ C (1992) Behavior of period-altered circadian rhythm mutants of Drosophila in light:dark cycles (Diptera: Drosophildae). J Insect Behav 5(4):417–446. https://doi.org/10.1007/BF01058189

    Article  Google Scholar 

  67. 67.

    Hansen S, Sodersten P, Eneroth P, Srebro B, Hole K (1979) A sexually dimorphic rhythm in oestradiol-activated lordosis behaviour in the rat. J Endocrinol 83:267–274

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–540. https://doi.org/10.1038/343536a0

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Harrington M (2010) Location, location, location: important for jet-lagged circadian loops. J Clin Invest 120:2265–2267. https://doi.org/10.1172/JCI43632

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Hastings MH (1997) Central clocking. Trends Neurosci 20:459–464

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349. https://doi.org/10.1002/cne.20970

    PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070. https://doi.org/10.1126/science.1069609

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Hayashi M, Shimba S, Tezuka M (2007) Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 30:621–626

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Hirao A, Tahara Y, Kimura I, Shibata S (2009) A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PLoS One 4:e6909. https://doi.org/10.1371/journal.pone.0006909

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Hsieh SD, Muto T, Murase T, Tsuji H, Arase Y (2011) Association of short sleep duration with obesity, diabetes, fatty liver and behavioral factors in Japanese men. Intern Med 50:2499–2502. https://doi.org/10.2169/internalmedicine.50.5844

  77. 77.

    Husse J, Leliavski A, Tsang AH, Oster H, Eichele G (2014) The light–dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J 28:4950–4960. https://doi.org/10.1096/fj.14-256594

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Ishida N, Kaneko M, Allada R (1999) Biological clocks. Proc Natl Acad Sci U S A 96:8819–8820

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Ito C, Goto SG, Shiga S, Tomioka K, Numata H (2008) Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster. Proc Natl Acad Sci U S A 105:8446–8451. https://doi.org/10.1073/pnas.0800145105

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Ivanchenko M, Stanewsky R, Giebultowicz JM (2001) Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythm 16:205–215. https://doi.org/10.1177/074873040101600303

    CAS  Article  Google Scholar 

  81. 81.

    Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. eLife 3:e04617. https://doi.org/10.7554/eLife.04617

  82. 82.

    Jud C, Schmutz I, Hampp G, Oster H, Albrecht U (2005) A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol Proced Online 7:101–116. https://doi.org/10.1251/bpo109

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Kageyama H, Kondo T, Iwasaki H (2003) Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteria. J Biol Chem 278:2388–2395. https://doi.org/10.1074/jbc.M208899200

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1996) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci 16:5555–5565

    CAS  PubMed  Google Scholar 

  85. 85.

    Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A 108:1657–1662. https://doi.org/10.1073/pnas.1018375108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS (2003) Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health 76:424–430. https://doi.org/10.1007/s00420-003-0440-y

    PubMed  Article  Google Scholar 

  87. 87.

    Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Speizer FE, Hennekens CH (1995) Prospective study of shift work and risk of coronary heart disease in women. Circulation 92:3178–3182

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412. https://doi.org/10.1073/pnas.0906361106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Koch CE, Leinweber B, Drengberg BC, Blaum C, Oster H (2017) Interaction between circadian rhythms and stress. Neurobiol Stress 6:57–67. https://doi.org/10.1016/j.ynstr.2016.09.001

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R (2004) Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol 468:361–379. https://doi.org/10.1002/cne.10995

    PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Kuroda H, Tahara Y, Saito K, Ohnishi N, Kubo Y, Seo Y, Otsuka M, Fuse Y, Ohura Y, Hirao A, Shibata S (2012) Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci Rep 2:711. https://doi.org/10.1038/srep00711

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93.

    Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172–15177. https://doi.org/10.1073/pnas.0806717105

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Le WW, Attardi B, Berghorn KA, Blaustein J, Hoffman GE (1997) Progesterone blockade of a luteinizing hormone surge blocks luteinizing hormone-releasing hormone Fos activation and activation of its preoptic area afferents. Brain Res 778:272–280

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433:312–334

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Lee RS, Tamashiro KL, Yang X, Purcell RH, Harvey A, Willour VL, Huo Y, Rongione M, Wand GS, Potash JB (2010) Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151:4332–4343. https://doi.org/10.1210/en.2010-0225

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Leproult R, Holmback U, Van Cauter E (2014) Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 63:1860–1869. https://doi.org/10.2337/db13-154

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Levine JE (1997) New concepts of the neuroendocrine regulation of gonadotropin surges in rats. Biol Reprod 56:293–302

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Litinski M, Scheer FA, Shea SA (2009) Influence of the circadian system on disease severity. Sleep Med Clin 4:143–163. https://doi.org/10.1016/j.jsmc.2009.02.005

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481. https://doi.org/10.1038/nature05767

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Liu J, Malkani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, Sun ZS (2006) The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 74:4750–4756. https://doi.org/10.1128/IAI.00287-06

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Loudon AS (2012) Circadian biology: a 2.5 billion-year old clock. Curr Biol 22:R570–R571. https://doi.org/10.1016/j.cub.2012.06.023

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Lucas RJ (2013) Mammalian inner retinal photoreception. Curr Biol 23:R125–R133. https://doi.org/10.1016/j.cub.2012.12.029

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Lucas RJ, Lall GS, Allen AE, Brown TM (2012) How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Prog Brain Res 199:1–18. https://doi.org/10.1016/B978-0-444-59427-3.00001-0

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Macfarlane DP, Forbes S, Walker BR (2008) Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 197:189–204. https://doi.org/10.1677/JOE-08-0054

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Marchant EG, Mistlberger RE (1997) Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Res 765:273–282

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the CLOCK components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631. https://doi.org/10.1038/nature09253

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS, Esser KA (2007) Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics 31:86–95. https://doi.org/10.1152/physiolgenomics.00066.2007

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sladek M, Semikhodskii AS, Glossop NRJ, Piggins HD, Chesham JE, Bechtold DA, Yoo SH, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon ASI (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58(1):78–88. https://doi.org/10.1016/j.neuron.2008.01.019

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Meyer P, Saez L, Young MW (2006) PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311(5758):226–229. https://doi.org/10.1126/science.1118126

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS (2004) Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol 14:1367–1373. https://doi.org/10.1016/j.cub.2004.07.055

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Mong J, Easton A, Kow LM, Pfaff D (2003) Neural, hormonal and genetic mechanisms for the activation of brain and behavior. Eur J Pharmacol 480:229–231

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Morin LP (2007) SCN organization reconsidered. J Biol Rhythms 22:3–13. https://doi.org/10.1177/0748730406296749

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Morris CJ, Purvis TE, Hu K, Scheer FA (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 113:E1402–E1411. https://doi.org/10.1073/pnas.1516953113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Myers EM (2003) The circadian control of eclosion. Chronobiol Int 20:775–794

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Nader N, Chrousos GP, Kino T (2009) Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J 23:1572–1583. https://doi.org/10.1096/fj.08-117697

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Nader N, Chrousos GP, Kino T (2010) Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab 21:277–286. https://doi.org/10.1016/j.tem.2009.12.011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E (2017) The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev 38:3–45. https://doi.org/10.1210/er.2015-1080

    PubMed  Article  Google Scholar 

  119. 119.

    Parkes KR (2002) Shift work and age as interactive predictors of body mass index among offshore workers. Scand J Work Environ Health 28:64–71

    PubMed  Article  Google Scholar 

  120. 120.

    Pieper DR, Gala RR (1979) The effect of light on the prolactin surges of pseudopregnant and ovariectomized, estrogenized rats. Biol Reprod 20:727–732

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Pilorz V, Steinlechner S, Oster H (2009) Age and oestrus cycle-related changes in glucocorticoid excretion and wheel-running activity in female mice carrying mutations in the circadian clock genes Per1 and Per2. Physiol Behav 96:57–63. https://doi.org/10.1016/j.physbeh.2008.08.01

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol 25:159–184

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54. https://doi.org/10.1146/annurev.ph.55.030193.000313

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998) double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Qu T, Dong K, Sugioka K, Yamadori T (1996) Demonstration of direct input from the retina to the lateral habenular nucleus in the albino rat. Brain Res 709:251–258

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978. https://doi.org/10.1126/science.2305266

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Ratajczak CK, Asada M, Allen GC, McMahon DG, Muglia LM, Smith D, Bhattacharyya S, Muglia LJ (2012) Generation of myometrium-specific Bmal1 knockout mice for parturition analysis. Reprod Fertil Dev 24:759–767. https://doi.org/10.1071/RD1116

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Roenneberg T, Merrow M (2005) Circadian clocks—the fall and rise of physiology. Nat Rev Mol Cell Biol 6:965–971. https://doi.org/10.1038/nrm1766

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Roenneberg T, Merrow M (2016) The circadian clock and human health. Curr Biol 26:R432–R443. https://doi.org/10.1016/j.cub.2016.04.011

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G (2006) Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16:1352–1365. https://doi.org/10.1101/gr.5094806

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, Ross RJ (2008) Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab 93:2300–2306. https://doi.org/10.1210/jc.2007-2674

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Rutila JE, Maltseva O, Rosbash M (1998) The timSL mutant affects a restricted portion of the Drosophila melanogaster circadian cycle. J Biol Rhythm 13:380–392. https://doi.org/10.1177/074873098129000200

    CAS  Article  Google Scholar 

  134. 134.

    Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93:805–814

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C (2010) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151:1019–1029. https://doi.org/10.1210/en.2009-0864

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111(7):919–922. https://doi.org/10.1016/S0092-8674(02)01225-4

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Selcho M, Millan C, Palacios-Munoz A, Ruf F, Ubillo L, Chen J, Bergmann G, Ito C, Silva V, Wegener C, Ewer J (2017) Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun 8:15563. https://doi.org/10.1038/ncomms15563mncomms15563

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Shafer OT, Rosbash M, Truman JW (2002) Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci 22:5946–5954

    CAS  PubMed  Google Scholar 

  141. 141.

    Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A 102(34):12071–12076. https://doi.org/10.1073/pnas.0502383102

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS (2007) Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129:1011–1023. https://doi.org/10.1016/j.cell.2007.04.030

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Siwicki KK, Eastman C, Petersen G, Rosbash M, Hall JC (1988) Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1:141–150

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Smyllie NJ, Pilorz V, Boyd J, Meng QJ, Saer B, Chesham JE, Maywood ES, Krogager TP, Spiller DG, Boot-Handford R, White MR, Hastings MH, Loudon AS (2016) Visualizing and quantifying intracellular behavior and abundance of the core circadian clock protein PERIOD2. Curr Biol 26:1880–1886. https://doi.org/10.1016/j.cub.2016.05.018

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    So AY, Bernal TU, Pillsbury ML, Yamamoto KR, Feldman BJ (2009) Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proc Natl Acad Sci U S A 106:17582–17587. https://doi.org/10.1073/pnas.0909733106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythm 17(4):284–292. https://doi.org/10.1177/074873040201700402

    Article  Google Scholar 

  148. 148.

    Stephan FK, Berkley KJ, Moss RL (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6:2625–2641

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493. https://doi.org/10.1126/science.291.5503

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Tahara Y, Otsuka M, Fuse Y, Hirao A, Shibata S (2011) Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock. J Biol Rhythm 26:230–240. https://doi.org/10.1177/0748730411405958

    CAS  Article  Google Scholar 

  151. 151.

    Takahashi JS (1995) Molecular neurobiology and genetics of circadian rhythms in mammals. Annu Rev Neurosci 18:531–553. https://doi.org/10.1146/annurev.ne.18.030195.002531

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775. https://doi.org/10.1038/nrg2430

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE (2004) Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol 14:638–649. https://doi.org/10.1016/j.cub.2004.04.009

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Tsang AH, Astiz M, Leinweber B, Oster H (2017) Rodent models for the analysis of tissue clock function in metabolic rhythms research. Front Endocrinol (Lausanne) 8:27. https://doi.org/10.3389/fendo.2017.00027

    Google Scholar 

  155. 155.

    Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045. https://doi.org/10.1126/science.1108750

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    van Amelsvoort LG, Schouten EG, Kok FJ (1999) Duration of shiftwork related to body mass index and waist to hip ratio. Int J Obes Relat Metab Disord 23:973–978

    PubMed  Article  Google Scholar 

  157. 157.

    Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Walton MJ, Anderson RA, Kicman AT, Elton RA, Ossowska K, Baird DT (2007) A diurnal variation in testicular hormone production is maintained following gonadotrophin suppression in normal men. Clin Endocrinol 66:123–129. https://doi.org/10.1111/j.1365-2265.2006.02696.x

    CAS  Google Scholar 

  159. 159.

    Wang N, Yang G, Jia Z, Zhang H, Aoyagi T, Soodvilai S, Symons JD, Schnermann JB, Gonzalez FJ, Litwin SE, Yang T (2008) Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 8:482–491. https://doi.org/10.1016/j.cmet.2008.10.009

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Wang N, Yin R, Liu Y, Mao G, Xi F (2011) Role of peroxisome proliferator-activated receptor-gamma in atherosclerosis: an update. Circ J 75:528–535

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Wang W, Barnaby JY, Tada Y, Li H, Tor M, Caldelari D, Lee DU, XD F, Dong X (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–114. https://doi.org/10.1038/nature09766

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229. https://doi.org/10.1002/cne.902580204

    CAS  PubMed  Article  Google Scholar 

  164. 164.

    Xu Y, Mori T, Johnson CH (2003) Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J 22:2117–2126. https://doi.org/10.1093/emboj/cdg168

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Yamashita K, Shiozawa A, Watanabe S, Fukumori F, Kimura M, Fujimura M (2008) ATF-1 transcription factor regulates the expression of ccg-1 and cat-1 genes in response to fludioxonil under OS-2 MAP kinase in Neurospora crassa. Fungal Genet Biol 45:1562–1569. https://doi.org/10.1016/j.fgb.2008.09.012

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK, Aguilera G, Abel ED, Chung JH (2009) The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150:2153–2160. https://doi.org/10.1210/en.2008-0705

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Yang Y, Cheng P, He Q, Wang L, Liu Y (2003) Phosphorylation of FREQUENCY protein by casein kinase II is necessary for the function of the Neurospora circadian clock. Mol Cell Biol 23(17):6221–6228. https://doi.org/10.1128/MCB.23.17.6221-6228.2003

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Yoo SH, Ko CH, Lowrey PL, Buhr ED, Song EJ, Chang S, Yoo OJ, Yamazaki S, Lee C, Takahashi JS (2005) A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc Natl Acad Sci U S A 102:2608–2613. https://doi.org/10.1073/pnas.0409763102

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Young ME, Bray MS (2007) Potential role for peripheral circadian clock dyssynchrony in the pathogenesis of cardiovascular dysfunction. Sleep Med 8:656–667. https://doi.org/10.1016/j.sleep.2006.12.010

    PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Yuan Q, Metterville D, Briscoe AD, Reppert SM (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24:948–955. https://doi.org/10.1093/molbev/msm011

    CAS  PubMed  Article  Google Scholar 

  171. 171.

    Zeng H, Hardin PE, Rosbash M (1994) Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. EMBO J 13:3590–3598

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Zhang EE, Kay SA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776. https://doi.org/10.1038/nrm2995

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the German Research Foundation (DFG; GRK-1957, SFB-134, OS-353/7-1). H.O. is a Lichtenberg fellow of the Volkswagen Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henrik Oster.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pilorz, V., Helfrich-Förster, C. & Oster, H. The role of the circadian clock system in physiology. Pflugers Arch - Eur J Physiol 470, 227–239 (2018). https://doi.org/10.1007/s00424-017-2103-y

Download citation

Keywords

  • Circadian clock
  • Physiology
  • Drosophila
  • Mammals
  • Clock genes