Advertisement

GABAA receptor: a unique modulator of excitability, Ca2+ signaling, and catecholamine release of rat chromaffin cells

  • Tzitzitlini Alejandre-García
  • Johanna G. Peña-del Castillo
  • Arturo Hernández-CruzEmail author
Invited Review

Abstract

The role of gamma-aminobutyric acid (GABA) in adrenal medulla chromaffin cell (CC) function is just beginning to unfold. GABA is stored in catecholamine (CA)-containing dense core granules and is presumably released together with CA, ATP, and opioids in response to physiological stimuli, playing an autocrine–paracrine role on CCs. The reported paradoxical “dual action” of GABAA-R activation (enhancement of CA secretion and inhibition of synaptically evoked CA release) is only one aspect of GABA’s multifaceted actions. In this review, we discuss recent physiological experiments on rat CCs in situ which suggest that GABA regulation of CC function may depend on the physiological context: During non-stressful conditions, GABAA-R activation by endogenous GABA tonically inhibits acetylcholine release from splanchnic nerve terminals and decreases spontaneous Ca2+ fluctuations in CCs, preventing unwanted CA secretion. During intense stress, splanchnic nerve terminals release acetylcholine, which depolarizes CCs and allows the Ca2+ influx that triggers the release of CA and GABA. With time, CA secretion declines, due to voltage-independent inhibition of Ca2+channels and desensitization of cholinergic nicotinic receptors. Nonetheless, acute activation of GABAA-R is depolarizing in about 50% of CCs, and thus GABA, acting as an autocrine/paracrine mediator, could help to maintain CA exocytosis under stress. GABAA-R activation is not excitatory in about half of CCs’ population because it hyperpolarizes them or elicits no response. This percentage possibly varies, depending on functional demands, since GABAA-R-mediated actions are determined by the intracellular chloride concentration ([Cl] i ) and therefore on the activity of cation-chloride co transporters, which is functionally regulated. These findings underscore a potential importance of a novel and complex GABA-mediated regulation of CC function and of CA secretion.

Keywords

Intracellular calcium Adrenal medulla gland Chromaffin cell Endogenous GABA GABAA receptors Catecholamine secretion 

Abbreviations

GABA

gamma-aminobutyric acid ()

GABAA-Rs

GABAA receptors

GABAB-R

GABAB receptors

CA

catecholamine

[Ca2+]i

intracellular Ca2+ concentration

[Cl]i

intracellular chloride concentration

CCs

adrenal medulla chromaffin cells

SCFs

spontaneous [Ca2+] i fluctuations

Vm

membrane potential

Notes

Acknowledgements

The authors wish to thank Dr. María Chávez Canales for helpful discussions and expert advice. The authors are also indebted to Nicolás Jiménez-Perez, Diana Millán-Aldaco, Arturo Picones Medina, and Ruth Rincón-Heredia for technical assistance and MVZ Claudia V. Rivera-Cerecedo for animal breeding and management. Alejandre-García T. and Peña del Castillo J. G. are Ph.D. students from the Programa de Doctorado en Ciencias Biológicas and Programa de Doctorado en Ciencias Biomédicas, respectively, of the Universidad Nacional Autonóma deMéxico (UNAM) and CONACyT Ph.D. fellows. This study was conducted as part of the Program’s requirements to obtain their Ph.D.

Funding information

The study is supported by grants 279820 (Laboratorio Nacional de Canalopatías) and CB 240305 from Consejo Nacional de Ciencia y Tecnología (CONACYT, México), PAPIIT IN211616 from Dirección General de Asuntos del Personal Académico (DGAPA-UNAM), and 039/2013 from Secretaría de Ciencia, Tecnología e Innovación del Distrito Federal (SECITI).

Compliance with ethical standards

Research involving animals complies with the guidelines of the Mexican Guide for the Care and Use of Laboratory Animals of the Secretary of Agriculture (SAGARPA NOM-062-Z00–1999). All experimental protocols were approved by the Institutional Committee of Care and Use of Laboratory Animals (CICUAL-IFC: protocol # AHC24-141). Research does not involve human patients.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Ahonen M, Joh TH, JY W, Häppölä O (1989) Immunocytochemical localization of L-glutamate decarboxylase and catecholamine-synthesizing enzymes in the retroperitoneal sympathetic tissue of the newborn rat. J Auton Nerv Syst 26:89–96CrossRefPubMedGoogle Scholar
  2. 2.
    Alamilla J, Perez-Burgos A, Quinto D, Aguilar-Roblero R (2014) Circadian modulation of the Cl(−) equilibrium potential in the rat suprachiasmatic nuclei. Biomed Res Int 2014:424982.  https://doi.org/10.1155/2014/424982 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Albiñana E, Segura-Chama P, Baraibar AM, Hernández-Cruz A, Hernández-Guijo JM (2015) Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices. J Neurochem 133:511–521.  https://doi.org/10.1111/jnc.13055 CrossRefPubMedGoogle Scholar
  4. 4.
    Alejandre García T, Segura Chama P, Pérez Armendáriz ME, Delgado Lezama R, Hernández Cruz A (2016) Modulation of spontaneous intracellular Ca2+ fluctuations and spontaneous cholinergic transmission in rat chromaffin cells in situ by endogenous GABA acting on GABAA receptors. Pflugers Arch Eur J Physiol 468:351–365.  https://doi.org/10.1007/s00424-015-1744-y CrossRefGoogle Scholar
  5. 5.
    Amenta F, Collier WL, Erdö SL, Giuliani S, Maggi CA, Meli A (1988) GABAA receptor sites modulating catecholamine secretion in the rat adrenal gland: evidence from 3H-muscimol autoradiography and in vivo functional studies. Pharmacology 37:394–402.  https://doi.org/10.1159/000138494 CrossRefPubMedGoogle Scholar
  6. 6.
    Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271.  https://doi.org/10.1113/jphysiol.1992.sp019126 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barbara J-G, Christophe Poncer J, Anne McKinney R, Takeda K (1998) An adrenal slice preparation for the study of chromaffin cells and their cholinergic innervation. J Neurosci Methods 80:181–189.  https://doi.org/10.1016/S0165-0270(97)00200-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284.  https://doi.org/10.1152/physrev.00017.2006 CrossRefPubMedGoogle Scholar
  9. 9.
    Bormann J (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci 11:112–116.  https://doi.org/10.1016/0166-2236(88)90156-7 CrossRefPubMedGoogle Scholar
  10. 10.
    Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol 385:243–286.  https://doi.org/10.1113/jphysiol.1987.sp016493 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bowery N (1989) GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10:401–407.  https://doi.org/10.1016/0165-6147(89)90188-0 CrossRefPubMedGoogle Scholar
  12. 12.
    Brandt BL, Hagiwara S, Kidokoro Y, Miyazaki S (1976) Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol 263:417–439.  https://doi.org/10.1113/jphysiol.1976.sp011638 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Busik J, Nakamura M, Abe Y, Shibuya I, Kanno T (1996) Effects of GABA on spontaneous [Ca2+]c dynamics and electrical properties of rat adrenal chromaffin cells. Brain Res 739:97–103.  https://doi.org/10.1016/S0006-8993(96)00814-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Currie KPM (2010) Inhibition of Ca2+ channels and adrenal catecholamine release by G protein coupled receptors. Cell Mol Neurobiol 30(8):1201.  https://doi.org/10.1007/s10571-010-9596-7 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    D’Andrea P, Zacchetti D, Meldolesi J, Grohovaz F (1993) Mechanism of [Ca2+]i oscillations in rat chromaffin cells. Complex Ca(2+)-dependent regulation of a ryanodine-insensitive oscillator. J Biol Chem 268:15213–15220PubMedGoogle Scholar
  16. 16.
    D’Andrea P, Codazzi F, Zacchetti D, Meldolesi J, Grohovaz F (1994) Oscillations of cytosolic calcium in rat chromaffin cells: dual modulation in frequency and amplitude. Biochem Biophys Res Commun 205:1264–1269.  https://doi.org/10.1006/bbrc.1994.2801 CrossRefPubMedGoogle Scholar
  17. 17.
    Draguhn A, Axmacher N, Kolbaev S (2008) Presynaptic ionotropic GABA receptors. In: Inhib. Regul. Excit. Neurotransmission. Springer Berlin Heidelberg, Berlin, pp 69–85Google Scholar
  18. 18.
    Eccles JC, Schmidt R, Willis WD (1963) Pharmacological studies on presynaptic inhibition. J Physiol 168:500–530.  https://doi.org/10.1113/jphysiol.1963.sp007205 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Errington AC (2014) Extrasynaptic GABAA receptors. In: Extrasynaptic GABAA recept. Springer New York, New York, pp 1–14Google Scholar
  20. 20.
    García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131.  https://doi.org/10.1152/physrev.00039.2005 CrossRefPubMedGoogle Scholar
  21. 21.
    Harada K, Matsuoka H, Nakamura J, Fukuda M, Inoue M (2010) Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells. J Neurochem 114:617–626.  https://doi.org/10.1111/j.1471-4159.2010.06792.x CrossRefPubMedGoogle Scholar
  22. 22.
    Harada K, Matsuoka H, Fujihara H, Ueta Y, Yanagawa Y (2016) GABA signaling and neuroactive steroids in adrenal medullary chromaffin cells. Front Cell Neurosci 10:1–11.  https://doi.org/10.3389/fncel.2016.00100 CrossRefGoogle Scholar
  23. 23.
    Hernández A, Segura-Chama P, Albiñana E, Hernández-Cruz A, Hernández-Guijo JM (2010) Down-modulation of Ca2+ channels by endogenously released ATP and opioids: from the isolated chromaffin cell to the slice of adrenal medullae. Cell Mol Neurobiol 30:1209–1216.  https://doi.org/10.1007/s10571-010-9576-y CrossRefPubMedGoogle Scholar
  24. 24.
    Hernández A, Segura-Chama P, Jiménez N, García AG, Hernández-Guijo JM, Hernández-Cruz A (2011) Modulation by endogenously released ATP and opioids of chromaffin cell calcium channels in mouse adrenal slices. Am J Phys Cell Phys 300:C610–C623.  https://doi.org/10.1152/ajpcell.00380.2010 CrossRefGoogle Scholar
  25. 25.
    Hernández-Guijo JM, Carabelli V, Gandía L, García AG, Carbone E (1999) Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. Eur J Neurosci 11:3574–3584.  https://doi.org/10.1046/j.1460-9568.1999.00775.x CrossRefPubMedGoogle Scholar
  26. 26.
    Inoue M, Hara M, Zeng X-T, Hirose T, Ohnishi S, Yasukura T, Uriu T, Omori K, Minato A, Inagaki C (1991) An ATP-driven Cl− pump regulates Cl− concentrations in rat hippocampal neurons. Neurosci Lett 134:75–78.  https://doi.org/10.1016/0304-3940(91)90512-R CrossRefPubMedGoogle Scholar
  27. 27.
    Inoue M, Harada K, Matsuoka H, Warashina A (2010) Paracrine role of GABA in adrenal chromaffin cells. Cell Mol Neurobiol 30:1217–1224.  https://doi.org/10.1007/s10571-010-9569-x CrossRefPubMedGoogle Scholar
  28. 28.
    Inoue M, Harada K, Nakamura J, Matsuoka H (2013) Regulation of α3-containing GABAA receptors in guinea-pig adrenal medullary cells by adrenal steroids. Neuroscience 253:245–255.  https://doi.org/10.1016/j.neuroscience.2013.08.046 CrossRefPubMedGoogle Scholar
  29. 29.
    Irwin RP, Allen CN (2009) GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur J Neurosci 30:1462–1475.  https://doi.org/10.1111/j.1460-9568.2009.06944.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Iwasa K, Oomori Y, Tanaka H (1998) Gamma aminobutyric acid immunoreactivity in the mouse adrenal gland during postnatal development. Arch Histol Cytol 61:373–382.  https://doi.org/10.1679/aohc.61.373 CrossRefPubMedGoogle Scholar
  31. 31.
    Iwasa K, Oomori Y, Tanaka H (1999) Colocalization of gamma-aminobutyric acid immunoreactivity and acetylcholinesterase activity in nerve fibers of the mouse adrenal gland. J Vet Med Sci 61:631–635.  https://doi.org/10.1292/jvms.61.631 CrossRefPubMedGoogle Scholar
  32. 32.
    Jang I-S, Jeong H-J, Katsurabayashi S, Akaike N (2002) Functional roles of presynaptic GABA A receptors on glycinergic nerve terminals in the rat spinal cord. J Physiol 541:423–434.  https://doi.org/10.1113/jphysiol.2001.016535 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kahle KT, Rinehart J, Lifton RP (2010) Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Biochim Biophys Acta Mol Basis Dis 1802:1150–1158.  https://doi.org/10.1016/j.bbadis.2010.07.009 CrossRefGoogle Scholar
  34. 34.
    Kajiwara R, Sand O, Kidokoro Y, Barish ME, Iijima T (1997) Functional organization of chromaffin cells and cholinergic synaptic transmission in rat adrenal medulla. Jpn J Physiol 47:449–464.  https://doi.org/10.2170/jjphysiol.47.449 CrossRefPubMedGoogle Scholar
  35. 35.
    Kása P, Dobó E, Wolff JR (1992) GABAergic action on cholinergic axon terminals in the superior cervical ganglion. In: GABA Outs. CNS. Springer Berlin Heidelberg, Berlin, pp 83–93CrossRefGoogle Scholar
  36. 36.
    Kataoka Y, Gutman Y, Guidotti A, Panula P, Wroblewski J, Cosenza-Murphy D, JY W, Costa E (1984) Intrinsic GABAergic system of adrenal chromaffin cells. Proc Natl Acad Sci 81:3218–3222.  https://doi.org/10.1073/pnas.81.10.3218 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kataoka Y, Fujimoto M, Alho H, Guidotti A, Geffard M, Kelly GD, Hanbauer I (1986) Intrinsic gamma aminobutyric acid receptors modulate the release of catecholamine from canine adrenal gland in situ. J Pharmacol Exp Ther 239:584–590PubMedGoogle Scholar
  38. 38.
    Kato K, Nakagawa C, Murabayashi H, Oomori Y (2014) Expression and distribution of GABA and GABA B-receptor in the rat adrenal gland. J Anat 224:207–215.  https://doi.org/10.1111/joa.12144 CrossRefPubMedGoogle Scholar
  39. 39.
    Kidokoro Y, Ritchie AK (1980) Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol 307:199–216.  https://doi.org/10.1113/jphysiol.1980.sp013431 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kowalczyk P, Kulig K (2014) GABA system as a target for new drugs. Curr Med Chem 21:3294–3309.  https://doi.org/10.2174/0929867321666140601202158 CrossRefPubMedGoogle Scholar
  41. 41.
    Lazo-Fernandez Y, Aguilera G, Pham TD, Park AY, Beierwaltes WH, Sutliff RL, Verlander JW, Pacak K, Osunkoya AO, Ellis CL, Kim YH, Shipley GL, Wynne BM, Hoover RS, Sen SK, Plotsky PM, Wall SM (2015) Pendrin localizes to the adrenal medulla and modulates catecholamine release. Am J Physiol Endocrinol Metab 309:E534–E545.  https://doi.org/10.1152/ajpendo.00035.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Matsuoka H, Harada K, Endo Y, Warashina A, Doi Y, Nakamura J, Inoue M (2008) Molecular mechanisms supporting a paracrine role of GABA in rat adrenal medullary cells. J Physiol 586:4825–4842.  https://doi.org/10.1113/jphysiol.2008.158709 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Oomori Y, Iuchi H, Nakaya K, Tanaka H, Ishikawa K, Satoh Y, Ono K (1993) Gamma-aminobutyric acid (GABA) immunoreactivity in the mouse adrenal gland. Histochemistry 100:203–213.  https://doi.org/10.1007/BF00269093 CrossRefPubMedGoogle Scholar
  44. 44.
    Oomori Y, Murabayashi H, Kuramoto H, Kawano H, Kato K, Nakagawa C, Sasaki M, Kitamura N, Ishikawa K, Tanaka K (2013) Gamma-aminobutyric acid B receptor immunoreactivity in the mouse adrenal medulla. Anat Rec 296:971–978.  https://doi.org/10.1002/ar.22697 CrossRefGoogle Scholar
  45. 45.
    Oset-Gasque MJ, Castro E, González MP (1990) Mechanisms of [3H] γ-aminobutyric acid release by chromaffin cells in primary culture. J Neurosci Res 26:181–187.  https://doi.org/10.1002/jnr.490260207 CrossRefPubMedGoogle Scholar
  46. 46.
    Peters JA, Lambert JJ, Cottrell GA (1989) An electrophysiological investigation of the characteristics and function of GABAA receptors on bovine adrenomedullary chromaffin cells. Pflugers Arch Eur J Physiol 415:95–103.  https://doi.org/10.1007/BF00373146 CrossRefGoogle Scholar
  47. 47.
    Roos A, Boron F (1981) Intracellular pH. Physiol Rev 61:296–434CrossRefPubMedGoogle Scholar
  48. 48.
    Sala F, Nistri A, Criado M (2008) Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol (Oxf) 192:203–212.  https://doi.org/10.1111/j.1748-1716.2007.01804.x CrossRefGoogle Scholar
  49. 49.
    Sarup A, Larsson OM, Schousboe A (2003) GABA transporters and GABA-transaminase as drug targets. Curr Drug Targets CNS Neurol Disord 2:269–277.  https://doi.org/10.2174/1568007033482788 CrossRefPubMedGoogle Scholar
  50. 50.
    Segura-Chama P, López-Bistrain P, Pérez-Armendáriz EM, Jiménez-Pérez N, Millán-Aldaco D, Hernández-Cruz A (2015) Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats. Pflugers Arch 467:2307–2323.  https://doi.org/10.1007/s00424-015-1702-8 CrossRefPubMedGoogle Scholar
  51. 51.
    Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABA a receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262–269.  https://doi.org/10.1016/j.tins.2004.03.005 CrossRefPubMedGoogle Scholar
  52. 52.
    Smith CB, Eiden LE (2012) Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? J Mol Neurosci 48:403–412.  https://doi.org/10.1007/s12031-012-9749-x CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tanaka C, Taniyama K (1992) The role of GABA in the peripheral nervous system. In: GABA Outs. CNS. Springer Berlin Heidelberg, Berlin, pp 3–17Google Scholar
  54. 54.
    Valeeva G, Tressard T, Mukhtarov M, Baude A, Khazipov R (2016) An optogenetic approach for investigation of excitatory and inhibitory network GABA actions in mice expressing channelrhodopsin-2 in GABAergic neurons. J Neurosci 36:5961–5973.  https://doi.org/10.1523/JNEUROSCI.3482-15.2016 CrossRefPubMedGoogle Scholar
  55. 55.
    Vandael DHF, Marcantoni A, Carbone E (2015) Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Curr Mol Pharmacol 8:149–161.  https://doi.org/10.2174/1874467208666150507105443 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Xie Z, Currie KPM, Cahill AL, Fox AP (2003) Role of Cl− co-transporters in the excitation produced by GABAA receptors in juvenile bovine adrenal chromaffin cells. J Neurophysiol 90:3828–3837.  https://doi.org/10.1152/jn.00617.2003 CrossRefPubMedGoogle Scholar
  57. 57.
    Zilberter M (2016) Reality of inhibitory GABA in neonatal brain: time to rewrite the textbooks? J Neurosci 36:10242–10244.  https://doi.org/10.1523/JNEUROSCI.2270-16.2016 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular , Circuito de la Investigación Científica s/n, Ciudad UniversitariaUniversidad Nacional Autónoma de México (UNAM)MéxicoMéxico
  2. 2.Laboratorio Nacional de Canalopatías, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)CDMXMéxico

Personalised recommendations