L-type calcium channels in exocytosis and endocytosis of chromaffin cells

  • Carmen Nanclares
  • Andrés M. Baraibar
  • Luis GandíaEmail author
Invited Review


The coexistence of different subtypes of voltage-dependent calcium channels (VDCC) within the same chromaffin cell (CC) and the marked interspecies variability in the proportion of VDCC subtypes that are present in the plasmalemma of the CCs raises the question on their roles in controlling different physiological functions. Particularly relevant seems to be the role of VDCCs in the regulation of the exocytotic neurotransmitter release process, and its tightly coupled membrane retrieval (endocytosis) process since both are Ca2+-dependent processes. This review is focused on the role of Ca2+ influx through L-type VDCC in the regulation of these two processes. It is currently accepted that the different VDCC subtypes (i.e., T, L, N, P/Q, R) contribute to exocytosis proportionally to their density of expression and gating properties. However, the pattern of stimulation defines a preferential role of the different subtypes of VDCC on exocytosis and endocytosis. Thus, L-type channels seem to control catecholamine release induced by prolonged stimuli while fast exocytosis in response to short square depolarizing pulses or action potentials is mediated by Ca2+ entering CCs through P/Q channels. The pattern of stimulation also influences the endocytotic process, and thus, electrophysiological data suggest the sustained Ca2+ entry through slow-inactivating L-type channels could be responsible for the activation of fast endocytosis.


Calcium channels Exocytosis Endocytosis Chromaffin cells 



This work was partially supported by grants SAF2013-44108-P and SAF2016-78892-R (Ministerio de Economía y Competitividad, Spain) to LG. We thank the continued support of Fundación Teófilo Hernando, Madrid, Spain.


  1. 1.
    Adams MB, Simonetta G, McMillen IC (1996) The non-neurogenic catecholamine response of the fetal adrenal to hypoxia is dependent on activation of voltage sensitive Ca2+ channels. Brain Res Dev Brain Res 94:182–189CrossRefPubMedGoogle Scholar
  2. 2.
    Albillos A, Artalejo AR, López MG, Gandía L, García AG, Carbone E (1994) Calcium channel subtypes in cat chromaffin cells. J Physiol 477:197–213CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Albillos A, Carbone E, Gandía L, García AG, Pollo A (1996) Opioid inhibition of Ca2+ channel subtypes in bovine chromaffin cells: selectivity of action and voltage-dependence. Eur J Neurosci 8:1561–1570CrossRefPubMedGoogle Scholar
  4. 4.
    Albillos A, García AG, Gandía L (1993) Omega-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett 336:259–262CrossRefPubMedGoogle Scholar
  5. 5.
    Albillos A, García AG, Olivera B, Gandía L (1996) Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations. Pflugers Arch 432:1030–1038CrossRefPubMedGoogle Scholar
  6. 6.
    Albiñana E, Segura-Chama P, Baraibar AM, Hernández-Cruz A, Hernández-Guijo JM (2015) Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices. J Neurochem 133:511–521CrossRefPubMedGoogle Scholar
  7. 7.
    Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ, Collaborators C (2013) The concise guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 170:1607–1651CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Alvarez YD, Belingheri AV, Pérez Bay AE, Javis SE, Tedford HW, Zamponi G, Marengo FD (2013) The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site. PLoS One 8:e54846CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alvarez YD, Ibañez LI, Uchitel OD, Marengo FD (2008) P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells. Cell Calcium 43:155–164CrossRefPubMedGoogle Scholar
  10. 10.
    Artalejo CR, Henley JR, McNiven MA, Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc Natl Acad Sci U S A 92:8328–8332CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Artalejo CR, Mogul DJ, Perlman RL, Fox AP (1991) Three types of bovine chromaffin cell Ca2+ channels: facilitation increases the opening probability of a 27 pS channel. J Physiol 444:213–240CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Artalejo CR, Perlman RL, Fox AP (1992) Omega-conotoxin GVIA blocks a Ca2+ current in bovine chromaffin cells that is not of the “classic” N type. Neuron 8:85–95CrossRefPubMedGoogle Scholar
  13. 13.
    Baldelli P, Hernández-Guijo JM, Carabelli V, Novara M, Cesetti T, Andrés-Mateos E, Montiel C, Carbone E (2004) Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits? Mol Neurobiol 29:73–96CrossRefPubMedGoogle Scholar
  14. 14.
    Bay AE, Belingheri AV, Alvarez YD, Marengo FD (2012) Membrane cycling after the excess retrieval mode of rapid endocytosis in mouse chromaffin cells. Acta Physiol (Oxf) 204:403–418CrossRefGoogle Scholar
  15. 15.
    Bernard C (1878-1879) Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Bailliere, ParisCrossRefGoogle Scholar
  16. 16.
    Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371CrossRefPubMedGoogle Scholar
  17. 17.
    Bossu JL, De Waard M, Feltz A (1991) Inactivation characteristics reveal two calcium currents in adult bovine chromaffin cells. J Physiol 437:603–620CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bossu JL, De Waard M, Feltz A (1991) Two types of calcium channels are expressed in adult bovine chromaffin cells. J Physiol 437:621–634CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cannon WB (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431CrossRefGoogle Scholar
  20. 20.
    Carabelli V, Carra I, Carbone E (1998) Localized secretion of ATP and opioids revealed through single Ca2+ channel modulation in bovine chromaffin cells. Neuron 20:1255–1268CrossRefPubMedGoogle Scholar
  21. 21.
    Carabelli V, D'Ascenzo M, Carbone E, Grassi C (2002) Nitric oxide inhibits neuroendocrine CaV1 L-channel gating via cGMP-dependent protein kinase in cell-attached patches of bovine chromaffin cells. J Physiol 541:351–366CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Carabelli V, Marcantoni A, Comunanza V, Carbone E (2007) Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence. Eur Biophys J 36:753–762CrossRefPubMedGoogle Scholar
  23. 23.
    Carabelli V, Marcantoni A, Comunanza V, de Luca A, Diaz J, Borges R, Carbone E (2007) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cárdenas AM, Marengo FD (2016) How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J Neurochem 137:867–879CrossRefPubMedGoogle Scholar
  25. 25.
    Cárdenas AM, Montiel C, Esteban C, Borges R, Garcia AG (1988) Secretion from adrenaline- and noradrenaline-storing adrenomedullary cells is regulated by a common dihydropyridine-sensitive calcium channel. Brain Res 456:364–366CrossRefPubMedGoogle Scholar
  26. 26.
    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425CrossRefPubMedGoogle Scholar
  27. 27.
    Ceccarelli B, Hurlbut WP (1980) Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J Cell Biol 87:297–303CrossRefPubMedGoogle Scholar
  28. 28.
    Cesetti T, Hernández-Guijo JM, Baldelli P, Carabelli V, Carbone E (2003) Opposite action of beta1- and beta2-adrenergic receptors on CaV1 L-channel current in rat adrenal chromaffin cells. J Neurosci 23:73–83PubMedGoogle Scholar
  29. 29.
    Chan SA, Polo-Parada L, Smith C (2005) Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices. Arch Biochem Biophys 435:65–73CrossRefPubMedGoogle Scholar
  30. 30.
    Comunanza V, Marcantoni A, Vandael DH, Mahapatra S, Gavello D, Carabelli V, Carbone E (2010) CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis? Channels (Austin) 4:440–446CrossRefGoogle Scholar
  31. 31.
    de Diego AM, Arnaiz-Cot JJ, Hernández-Guijo JM, Gandía L, García AG (2008) Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells. Acta Physiol (Oxf) 194:97–109CrossRefGoogle Scholar
  32. 32.
    de Pascual R, Miranda-Ferreira R, Galvao KM, Lameu C, Ulrich H, Smaili SS, Jurkiewicz A, García AG, Gandía L (2013) Lower density of L-type and higher density of P/Q-type of calcium channels in chromaffin cells of hypertensive, compared with normotensive rats. Eur J Pharmacol 706:25–35CrossRefPubMedGoogle Scholar
  33. 33.
    Douglas WW, Rubin RP (1961) The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol Paris 159:40–57CrossRefGoogle Scholar
  34. 34.
    Engisch KL, Nowycky MC (1996) Calcium dependence of large dense-cored vesicle exocytosis evoked by calcium influx in bovine adrenal chromaffin cells. J Neurosci 16:1359–1369PubMedGoogle Scholar
  35. 35.
    Fernández-Morales JC, Cortés-Gil L, García AG, de Diego AM (2009) Differences in the quantal release of catecholamines in chromaffin cells of rat embryos and their mothers. Am J Physiol Cell Physiol 297:C407–C418CrossRefPubMedGoogle Scholar
  36. 36.
    Fernández-Morales JC, Padín JF, Arranz-Tagarro JA, Vestring S, García AG, de Diego AM (2014) Hypoxia-elicited catecholamine release is controlled by L-type as well as N/PQ types of calcium channels in rat embryo chromaffin cells. Am J Physiol Cell Physiol 307:C455–C465CrossRefPubMedGoogle Scholar
  37. 37.
    Gandía L, Albillos A, García AG (1993) Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem Biophys Res Commun 194:671–676CrossRefPubMedGoogle Scholar
  38. 38.
    Gandía L, Borges R, Albillos A, García AG (1995) Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflugers Arch 430:55–63CrossRefPubMedGoogle Scholar
  39. 39.
    Gandía L, García AG, Morad M (1993) ATP modulation of calcium channels in chromaffin cells. J Physiol 470:55–72CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gandía L, Lara B, Imperial JS, Villarroya M, Albillos A, Maroto R, García AG, Olivera BM (1997) Analogies and differences between omega-conotoxins MVIIC and MVIID: binding sites and functions in bovine chromaffin cells. Pflugers Arch 435:55–64CrossRefPubMedGoogle Scholar
  41. 41.
    Gandía L, López MG, Fonteriz RI, Artalejo CR, García AG (1987) Relative sensitivities of chromaffin cell calcium channels to organic and inorganic calcium antagonists. Neurosci Lett 77:333–338CrossRefPubMedGoogle Scholar
  42. 42.
    Gandía L, Mayorgas I, Michelena P, Cuchillo I, de Pascual R, Abad F, Novalbos JM, Larrañaga E, García AG (1998) Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflugers Arch 436:696–704CrossRefPubMedGoogle Scholar
  43. 43.
    García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131CrossRefPubMedGoogle Scholar
  44. 44.
    García AG, Sala F, Reig JA, Viniegra S, Frías J, Fonteriz R, Gandía L (1984) Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. Nature 309:69–71CrossRefPubMedGoogle Scholar
  45. 45.
    García-Fernández M, Mejias R, López-Barneo J (2007) Developmental changes of chromaffin cell secretory response to hypoxia studied in thin adrenal slices. Pflugers Arch 454:93–100CrossRefPubMedGoogle Scholar
  46. 46.
    García-Palomero E, Cuchillo-Ibañez I, García AG, Renart J, Albillos A, Montiel C (2000) Greater diversity than previously thought of chromaffin cell Ca2+ channels, derived from mRNA identification studies. FEBS Lett 481:235–239CrossRefPubMedGoogle Scholar
  47. 47.
    García-Palomero E, Renart J, Andrés-Mateos E, Solís-Garrido LM, Matute C, Herrero CJ, García AG, Montiel C (2001) Differential expression of calcium channel subtypes in the bovine adrenal medulla. Neuroendocrinology 74:251–261CrossRefPubMedGoogle Scholar
  48. 48.
    Giancippoli A, Novara M, de Luca A, Baldelli P, Marcantoni A, Carbone E, Carabelli V (2006) Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Biophys J 90:1830–1841CrossRefPubMedGoogle Scholar
  49. 49.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100CrossRefPubMedGoogle Scholar
  50. 50.
    Henkel AW, Almers W (1996) Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr Opin Neurobiol 6:350–357CrossRefPubMedGoogle Scholar
  51. 51.
    Hernández-Guijo JM, Carabelli V, Gandía L, García AG, Carbone E (1999) Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. Eur J Neurosci 11:3574–3584CrossRefPubMedGoogle Scholar
  52. 52.
    Hernández-Guijo JM, de Pascual R, García AG, Gandía L (1998) Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions. Pflugers Arch 436:75–82CrossRefPubMedGoogle Scholar
  53. 53.
    Hernández-Guijo JM, Gandía L, de Pascual R, García AG (1997) Differential effects of the neuroprotectant lubeluzole on bovine and mouse chromaffin cell calcium channel subtypes. Br J Pharmacol 122:275–285CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hernández-Guijo JM, Maneu-Flores VE, Ruiz-Nuño A, Villarroya M, García AG, Gandía L (2001) Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria. J Neurosci 21:2553–2560PubMedGoogle Scholar
  55. 55.
    Hernández-Vivanco A, Sanz-Lazaro S, Jiménez-Pompa A, García-Magro N, Carmona-Hidalgo B, Pérez-Alvarez A, Caba-González JC, Tabernero A, Alonso YGS, Passas J, Blázquez J, González-Enguita C, de Castro-Guerín C, Albillos A (2017) Human native Cav1 channels in chromaffin cells: contribution to exocytosis and firing of spontaneous action potentials. Eur J Pharmacol 796:115–121CrossRefPubMedGoogle Scholar
  56. 56.
    Hill J, Chan SA, Kuri B, Smith C (2011) Pituitary adenylate cyclase-activating peptide (PACAP) recruits low voltage-activated T-type calcium influx under acute sympathetic stimulation in mouse adrenal chromaffin cells. J Biol Chem 286:42459–42469CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kim SJ, Lim W, Kim J (1995) Contribution of L- and N-type calcium currents to exocytosis in rat adrenal medullary chromaffin cells. Brain Res 675:289–296CrossRefPubMedGoogle Scholar
  58. 58.
    Kitamura N, Ohta T, Ito S, Nakazato Y (1997) Calcium channel subtypes in porcine adrenal chromaffin cells. Pflugers Arch 434:179–187CrossRefPubMedGoogle Scholar
  59. 59.
    Lara B, Gandía L, Martínez-Sierra R, Torres A, García AG (1998) Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells. Pflugers Arch 435:472–478CrossRefPubMedGoogle Scholar
  60. 60.
    Levitsky KL, López-Barneo J (2009) Developmental change of T-type Ca2+ channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia. J Physiol 587:1917–1929CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lomax RB, Michelena P, Nuñez L, García-Sancho J, García AG, Montiel C (1997) Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am J Phys 272:C476–C484CrossRefGoogle Scholar
  62. 62.
    López MG, Albillos A, de la Fuente MT, Borges R, Gandía L, Carbone E, García AG, Artalejo AR (1994) Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflugers Arch 427:348–354CrossRefPubMedGoogle Scholar
  63. 63.
    López MG, Shukla R, García AG, Wakade AR (1992) A dihydropyridine-resistant component in the rat adrenal secretory response to splanchnic nerve stimulation. J Neurochem 58:2139–2144CrossRefPubMedGoogle Scholar
  64. 64.
    López MG, Villarroya M, Lara B, Martínez Sierra R, Albillos A, García AG, Gandía L (1994) Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells. FEBS Lett 349:331–337CrossRefPubMedGoogle Scholar
  65. 65.
    Lukyanetz EA, Neher E (1999) Different types of calcium channels and secretion from bovine chromaffin cells. Eur J Neurosci 11:2865–2873CrossRefPubMedGoogle Scholar
  66. 66.
    Mahapatra S, Calorio C, Vandael DH, Marcantoni A, Carabelli V, Carbone E (2012) Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 51:321–330CrossRefPubMedGoogle Scholar
  67. 67.
    Mahapatra S, Marcantoni A, Vandael DH, Striessnig J, Carbone E (2011) Are Cav1.3 pacemaker channels in chromaffin cells? Possible bias from resting cell conditions and DHP blockers usage. Channels (Austin) 5:219–224CrossRefGoogle Scholar
  68. 68.
    Mahapatra S, Marcantoni A, Zuccotti A, Carabelli V, Carbone E (2012) Equal sensitivity of Cav1.2 and Cav1.3 channels to the opposing modulations of PKA and PKG in mouse chromaffin cells. J Physiol 590:5053–5073CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Marcantoni A, Baldelli P, Hernandez-Guijo JM, Comunanza V, Carabelli V, Carbone E (2007) L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion. Cell Calcium 42:397–408CrossRefPubMedGoogle Scholar
  70. 70.
    Marcantoni A, Carabelli V, Comunanza V, Hoddah H, Carbone E (2008) Calcium channels in chromaffin cells: focus on L and T types. Acta Physiol (Oxf) 192:233–246CrossRefGoogle Scholar
  71. 71.
    Marcantoni A, Carabelli V, Vandael DH, Comunanza V, Carbone E (2009) PDE type-4 inhibition increases L-type Ca2+ currents, action potential firing, and quantal size of exocytosis in mouse chromaffin cells. Pflugers Arch 457:1093–1110CrossRefPubMedGoogle Scholar
  72. 72.
    Marcantoni A, Vandael DH, Mahapatra S, Carabelli V, Sinnegger-Brauns MJ, Striessnig J, Carbone E (2010) Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 30:491–504CrossRefPubMedGoogle Scholar
  73. 73.
    Nagayama T, Matsumoto T, Kuwakubo F, Fukushima Y, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S (1999) Role of calcium channels in catecholamine secretion in the rat adrenal gland. J Physiol 520:503–512CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Neher E, Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21–30CrossRefPubMedGoogle Scholar
  75. 75.
    Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A, Carbone E (2004) Exposure to cAMP and beta-adrenergic stimulation recruits CaV3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558:433–449CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu Rev Biochem 63:823–867CrossRefPubMedGoogle Scholar
  77. 77.
    Perissinotti PP, Giugovaz Tropper B, Uchitel OD (2008) L-type calcium channels are involved in fast endocytosis at the mouse neuromuscular junction. Eur J Neurosci 27:1333–1344CrossRefPubMedGoogle Scholar
  78. 78.
    Prakriya M, Lingle CJ (1999) BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. J Neurophysiol 81:2267–2278CrossRefPubMedGoogle Scholar
  79. 79.
    Rosa JM, de Diego AM, Gandía L, García AG (2007) L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells. Biochem Biophys Res Commun 357:834–839CrossRefPubMedGoogle Scholar
  80. 80.
    Rosa JM, Gandía L, García AG (2009) Inhibition of N and PQ calcium channels by calcium entry through L channels in chromaffin cells. Pflugers Arch 458:795–807CrossRefPubMedGoogle Scholar
  81. 81.
    Rosa JM, Torregrosa-Hetland CJ, Colmena I, Gutiérrez LM, García AG, Gandía L (2011) Calcium entry through slow-inactivating L-type calcium channels preferentially triggers endocytosis rather than exocytosis, in bovine chromaffin cells. Am J Physiol Cell Physiol 301:C86–C98CrossRefPubMedGoogle Scholar
  82. 82.
    Santana F, Michelena P, Jaén R, García AG, Borges R (1999) Calcium channel subtypes and exocytosis in chromaffin cells: a different view from the intact rat adrenal. Naunyn Schmiedeberg's Arch Pharmacol 360:33–37CrossRefGoogle Scholar
  83. 83.
    Scott AL, Zhang M, Nurse CA (2015) Enhanced BDNF signalling following chronic hypoxia potentiates catecholamine release from cultured rat adrenal chromaffin cells. J Physiol 593:3281–3299CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Smith C, Moser T, Xu T, Neher E (1998) Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20:1243–1253CrossRefPubMedGoogle Scholar
  85. 85.
    Takeuchi Y, Mochizuki-Oda N, Yamada H, Kurokawa K, Watanabe Y (2001) Nonneurogenic hypoxia sensitivity in rat adrenal slices. Biochem Biophys Res Commun 289:51–56CrossRefPubMedGoogle Scholar
  86. 86.
    Thompson RJ, Jackson A, Nurse CA (1997) Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol 498:503–510CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ulate G, Scott SR, González J, Gilabert JA, Artalejo AR (2000) Extracellular ATP regulates exocytosis in inhibiting multiple Ca2+ channel types in bovine chromaffin cells. Pflugers Arch 439:304–314PubMedGoogle Scholar
  88. 88.
    Vandael DH, Marcantoni A, Carbone E (2015) Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Curr Mol Pharmacol 8:149–161CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Vandael DH, Marcantoni A, Mahapatra S, Caro A, Ruth P, Zuccotti A, Knipper M, Carbone E (2010) Cav1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol 42:185–198CrossRefPubMedGoogle Scholar
  90. 90.
    Vandael DH, Zuccotti A, Striessnig J, Carbone E (2012) CaV1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells. J Neurosci 32:16345–16359CrossRefPubMedGoogle Scholar
  91. 91.
    Villarroya M, De la Fuente MT, López MG, Gandía L, García AG (1997) Distinct effects of omega-toxins and various groups of Ca2+-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. Eur J Pharmacol 320:249–257CrossRefPubMedGoogle Scholar
  92. 92.
    Wick PF, Westenbroek RE, Holz RW (1996) Effects of expression of a mouse brain L-type calcium channel alpha 1 subunit on secretion from bovine adrenal chromaffin cells. Mol Pharmacol 49:295–302PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations