Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 1, pp 155–167 | Cite as

How does the stimulus define exocytosis in adrenal chromaffin cells?

  • Fernando D. MarengoEmail author
  • Ana M. CárdenasEmail author
Invited Review


The extent and type of hormones and active peptides secreted by the chromaffin cells of the adrenal medulla have to be adjusted to physiological requirements. The chromaffin cell secretory activity is controlled by the splanchnic nerve firing frequency, which goes from approximately 0.5 Hz in basal conditions to more than 15 Hz in stress. Thus, these neuroendocrine cells maintain a tonic release of catecholamines under resting conditions, massively discharge intravesicular transmitters in response to stress, or adequately respond to moderate stimuli. In order to adjust the secretory response to the stimulus, the adrenal chromaffin cells have an appropriate organization of Ca2+ channels, secretory granules pools, and sets of proteins dedicated to selectively control different steps of the secretion process, such as the traffic, docking, priming and fusion of the chromaffin granules. Among the molecules implicated in such events are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Ca2+ sensors like Munc13 and synaptotagmin-1, chaperon proteins such as Munc18, and the actomyosin complex. In the present review, we discuss how these different actors contribute to the extent and maintenance of the stimulus-dependent exocytosis in the adrenal chromaffin cells.


Exocytosis Chromaffin cells Voltage-dependent Ca2+ channels Vesicle pools Catecholamines 



This work has been supported by the grants FONDECYT 1160495 (Chile), P09-022-F from ICM-ECONOMIA (Chile), PICT 0524-2014 from Agencia Nacional de Promoción Científica y Tecnológica (Argentina), and UBACyT 2014-2017 from Universidad de Buenos Aires (Argentina). The Centro Interdisciplinario de Neurociencia de Valparaíso (CINV) is a Millennium Institute supported by the Millennium Scientific Initiative of the Ministerio de Economía, Fomento y Turismo.


  1. 1.
    Albillos A, Dernick G, Horstmann H, Almers W, Alvarez de Toledo G, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389(6650):509–512. doi: 10.1038/39081 PubMedCrossRefGoogle Scholar
  2. 2.
    Albillos A, Neher E, Moser T (2000) R-type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells. J Neurosci 20:8323–8330PubMedGoogle Scholar
  3. 3.
    Alés E, Fuentealba J, Garcia AG, Lopez MG (2005) Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria. Eur J Neurosci 21:142–150. doi: 10.1111/j.1460-9568.2004.03861.x PubMedCrossRefGoogle Scholar
  4. 4.
    Alés E, Tabares L, Poyato JM, Valero V, Lindau M, Alvarez de Toledo G (1999) High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat Cell Biol 1:40–44. doi: 10.1038/9012 PubMedCrossRefGoogle Scholar
  5. 5.
    Alvarez YD, Belingheri AV, Perez Bay AE, Javis SE, Tedford HW, Zamponi G, Marengo FD (2013) The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site. PLoS One 8:e54846. doi: 10.1371/journal.pone.0054846 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Alvarez YD, Ibanez LI, Uchitel OD, Marengo FD (2008) P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells. Cell Calcium 43:155–164. doi: 10.1016/j.ceca.2007.04.014 PubMedCrossRefGoogle Scholar
  7. 7.
    Alvarez YD, Marengo FD (2011) The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells. J Neurochem 116:155–163. doi: 10.1111/j.1471-4159.2010.07108.x PubMedCrossRefGoogle Scholar
  8. 8.
    Anantharam A, Bittner MA, Aikman RL, Stuenkel EL, Schmid SL, Axelrod D, Holz RW (2011) A new role for the dynamin GTPase in the regulation of fusion pore expansion. Mol Biol Cell 22:1907–1918. doi: 10.1091/mbc.E11-02-0101 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Archer DA, Graham ME, Burgoyne RD (2002) Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J Biol Chem 277:18249–18252. doi: 10.1074/jbc.C200166200 PubMedCrossRefGoogle Scholar
  10. 10.
    Ardiles AO, González-Jamett AM, Maripillán J, Naranjo D, Caviedes P, Cárdenas AM (2007) Calcium channel subtypes differentially regulate fusion pore stability and expansion. J Neurochem 103:1574–1581. doi: 10.1111/j.1471-4159.2007.04871.x PubMedCrossRefGoogle Scholar
  11. 11.
    Ardiles AO, Maripillán J, Lagos VL, Toro R, Mora IG, Villarroel L, Alés E, Borges R, Cárdenas AM (2006) A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 99:29–41. doi: 10.1111/j.1471-4159.2006.04080.x PubMedCrossRefGoogle Scholar
  12. 12.
    Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367:72–76. doi: 10.1038/367072a0 PubMedCrossRefGoogle Scholar
  13. 13.
    Ashery U, Varoqueaux F, Voets T, Betz A, Thakur P, Koch H, Neher E, Brose N, Rettig J (2000) Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 19:3586–3596. doi: 10.1093/emboj/19.14.3586 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bao H, Goldschen-Ohm M, Jeggle P, Chanda B, Edwardson JM, Chapman ER (2016) Exocytotic fusion pores are composed of both lipids and proteins. Nat Struct Mol Biol 23:67–73. doi: 10.1038/nsmb.3141 PubMedCrossRefGoogle Scholar
  16. 16.
    Becherer U, Moser T, Stuhmer W, Oheim M (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6:846–853. doi: 10.1038/nn1087 PubMedCrossRefGoogle Scholar
  17. 17.
    Berberian K, Torres AJ, Fang Q, Kisler K, Lindau M (2009) F-actin and myosin II accelerate catecholamine release from chromaffin granules. J Neurosci 29:863–870. doi: 10.1523/JNEUROSCI.2818-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S, Matti U, Rettig J, Südhof T, Bruns D (2005) v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 24:2114–2126. doi: 10.1038/sj.emboj.7600696 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brandt BL, Hagiwara S, Kikodoro Y, Miyazaki S (1976) Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol 263:417–439PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Brewer KD, Bacaj T, Cavalli A, Camilloni C, Swarbrick JD, Liu J, Zhou A, Zhou P, Barlow N, Xu J, Seven AB, Prinslow EA, Voleti R, Häussinger D, Bonvin AM, Tomchick DR, Vendruscolo M, Graham B, Südhof TC, Rizo J (2015) Dynamic binding mode of a synaptotagmin-1-SNARE complex in solution. Nat Struct Mol Biol 22:555–564. doi: 10.1038/nsmb.3035 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cárdenas AM, Marengo F (2016) How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode and vesicle recycling in neuroendocrine cells. J Neurochem 137:867–879. doi: 10.1007/s10571-010-9579-8 PubMedCrossRefGoogle Scholar
  22. 22.
    Chan SA, Polo-Parada L, Smith C (2005) Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices. Arch Biochem Biophys 435:65–73. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  23. 23.
    Chang CW, Hui E, Bai J, Bruns D, Chapman ER, Jackson MB (2015) A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores. J Neurosci 35:5772–5780. doi: 10.1523/JNEUROSCI.3983-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chiang HC, Shin W, Zhao WD, Hamid E, Sheng J, Baydyuk M, Wen PJ, Jin A, Momboisse F, Wu LG (2014) Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nat Commun 5:3356. doi: 10.1038/ncomms4356 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chow RH, Klingauf J, Neher E (1994) Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proc Natl Acad Sci U S A 91:12765–12769PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Davis AF, Bai J, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER (1999) Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24:363–376PubMedCrossRefGoogle Scholar
  27. 27.
    Dawidowski D, Cafiso DS (2016) Munc18-1 and the syntaxin-1 N terminus regulate open-closed states in a t-SNARE complex. Structure 24:392–400. doi: 10.1016/j.str.2016.01.005 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    de Diego AM, Arnaiz-Cot JJ, Hernandez-Guijo JM, Gandia L, Garcia AG (2008) Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells. Acta Physiol (Oxf) 194:97–109. doi: 10.1111/j.1748-1716.2008.01871.x CrossRefGoogle Scholar
  29. 29.
    de Diego AM, Gandía L, García AG (2008) A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 192(2):287–301. doi: 10.1111/j.1748-1716.2008.01871.x CrossRefGoogle Scholar
  30. 30.
    de Wit H, Cornelisse LN, Toonen RF, Verhage M (2006) Docking of secretory vesicles is syntaxin dependent. PLoS One 1:e126. doi: 10.1371/journal.pone.0000126 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    de Wit H, Walter AM, Milosevic I, Gulyás-Kovács A, Riedel D, Sørensen JB, Verhage M (2009) Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell 138:935–946. doi: 10.1016/j.cell.2009.07.027 PubMedCrossRefGoogle Scholar
  32. 32.
    Dhara M, Yarzagaray A, Schwarz Y, Dutta S, Grabner C, Moghadam PK, Bost A, Schirra C, Rettig J, Reim K, Brose N, Mohrmann R, Bruns D (2014) Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. J Cell Biol 204:1123–1140. doi: 10.1083/jcb.201311085 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Duan K, Yu X, Zhang C, Zhou Z (2003) Control of secretion by temporal patterns of action potentials in adrenal chromaffin cells. J Neurosci 23:11235–11243PubMedGoogle Scholar
  34. 34.
    Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Südhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382. doi: 10.1093/emboj/18.16.4372 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dumitrescu Pene T, Rosé SD, Lejen T, Marcu MG, Trifaró JM (2005) Expression of various scinderin domains in chromaffin cells indicates that this protein acts as a molecular switch in the control of actin filament dynamics and exocytosis. J Neurochem 92:780–789. doi: 10.1111/j.1471-4159.2004.02907.x PubMedCrossRefGoogle Scholar
  36. 36.
    Elhamdani A, Azizi F, Artalejo CR (2006) Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 26:3030–3036. doi: 10.1523/JNEUROSCI.5275-05.2006 PubMedCrossRefGoogle Scholar
  37. 37.
    Elhamdani A, Palfrey HC, Artalejo CR (2001) Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31:819–830PubMedCrossRefGoogle Scholar
  38. 38.
    Estévez-Herrera J, González-Santana A, Baz-Dávila R, Machado JD, Borges R (2016) The intravesicular cocktail and its role in the regulation of exocytosis. J Neurochem 137:897–903. doi: 10.1111/jnc.13609 PubMedCrossRefGoogle Scholar
  39. 39.
    Fang Q, Berberian K, Gong LW, Hafez I, Sørensen JB, Lindau M (2008) The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics. Proc Natl Acad Sci U S A 105:15388–15392. doi: 10.1073/pnas.0805377105 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fang Q, Zhao Y, Herbst AD, Kim BN, Lindau M (2015) Positively charged amino acids at the SNAP-25 C terminus determine fusion rates, fusion pore properties, and energetics of tight SNARE complex zippering. J Neurosci 35:3230–3239. doi: 10.1523/JNEUROSCI.2905-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fang Q, Zhao Y, Lindau M (2013) Juxtamembrane tryptophans of synaptobrevin 2 control the process of membrane fusion. FEBS Lett 587:67–72. doi: 10.1016/j.febslet.2012.11.002 PubMedCrossRefGoogle Scholar
  42. 42.
    Firestone JA, Browning MD (1992) Synapsin II phosphorylation and catecholamine release in bovine adrenal chromaffin cells: additive effects of histamine and nicotine. J Neurochem 58:441–447PubMedCrossRefGoogle Scholar
  43. 43.
    Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25:7324–7332. doi: 10.1523/JNEUROSCI.2042-05.2005 PubMedCrossRefGoogle Scholar
  44. 44.
    Gabel M, Delavoie F, Demais V, Royer C, Bailly Y, Vitale N, Bader MF, Chasserot-Golaz S (2015) Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J Cell Biol 210:785–800. doi: 10.1083/jcb.201412030 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    García AG, Garcia-de-Diego AM, Gandia L, Borges R, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131. doi: 10.1152/physrev.00039.2005 PubMedCrossRefGoogle Scholar
  46. 46.
    García AG, Padín F, Fernández-Morales JC, Maroto M, García-Sancho J (2012) Cytosolic organelles shape calcium signals and exo-endocytotic responses of chromaffin cells. Cell Calcium 51:309–320. doi: 10.1016/j.ceca.2011.12.004 PubMedCrossRefGoogle Scholar
  47. 47.
    García-Sancho J, de Diego AM, García AG (2012) Mitochondria and chromaffin cell function. Pflugers Arch 464:33–41. doi: 10.1007/s00424-012-1074-2 PubMedCrossRefGoogle Scholar
  48. 48.
    Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15:520–531. doi: 10.1091/mbc.E03-06-0402 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–4461. doi: 10.1038/nrm1661 PubMedCrossRefGoogle Scholar
  50. 50.
    Giner D, López I, Villanueva J, Torres V, Viniegra S, Gutiérrez LM (2007) Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells. Neurosci 146:659–669. doi: 10.1016/j.neuroscience.2007.02.039 CrossRefGoogle Scholar
  51. 51.
    Giner D, Neco P, Francés Mdel M, López I, Viniegra S, Gutiérrez LM (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118:2871–2880. doi: 10.1242/jcs.02419 PubMedCrossRefGoogle Scholar
  52. 52.
    Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:676–680. doi: 10.1126/science.1129450 PubMedCrossRefGoogle Scholar
  53. 53.
    González-Jamett AM, Báez-Matus X, Hevia MA, Guerra MJ, Olivares MJ, Martínez AD, Neely A, Cárdenas AM (2010) The association of dynamin with synaptophysin regulates quantal size and duration of exocytotic events in chromaffin cells. J Neurosci 30:10683–10691. doi: 10.1523/JNEUROSCI.5210-09.2010 PubMedCrossRefGoogle Scholar
  54. 54.
    González-Jamett AM, Guerra MJ, Olivares MJ, Haro-Acuña V, Baez-Matus X, Momboisse F, Martínez-Quiles N, Cárdenas AM (2017) The F-actin binding protein cortactin regulates the dynamics of the exocytotic fusion pore through its SH3 domain. Front Cell Neurosci 11:130. doi: 10.3389/fncel.2017.00130 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    González-Jamett AM, Haro-Acuña V, Momboisse F, Caviedes P, Bevilacqua JA, Cárdenas AM (2014) Dynamin-2 in nervous system disorders. J Neurochem 128:210–223. doi: 10.1111/jnc.12455 PubMedCrossRefGoogle Scholar
  56. 56.
    González-Jamett AM, Momboisse F, Guerra MJ, Ory S, Báez-Matus X, Barraza N, Calco V, Houy S, Couve E, Neely A, Martínez AD, Gasman S, Cárdenas AM (2013) Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells. PLoS One 8:e70638. doi: 10.1371/journal.pone.0070638 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Graham ME, O'Callaghan DW, McMahon HT, Burgoyne RD (2002) Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci U S A 99:7124–7129. doi: 10.1073/pnas.102645099 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gulyás-Kovács A, de Wit H, Milosevic I, Kochubey O, Toonen R, Klingauf J, Verhage M, Sørensen JB (2007) Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming. J Neurosci 27:8676–8686. doi: 10.1523/JNEUROSCI.0658-07.2007 PubMedCrossRefGoogle Scholar
  59. 59.
    Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292. doi: 10.1126/science.1095801 PubMedCrossRefGoogle Scholar
  60. 60.
    Heinemann C, von Ruden L, Chow RH, Neher E (1993) A two-step model of secretion control in neuroendocrine cells. Pflugers Archiv 424:105–112PubMedCrossRefGoogle Scholar
  61. 61.
    Holman ME, Coleman HA, Tonta MA, Parkington HC (1994) Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs. J Physiol 478:115–124PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Horrigan FT, Bookman RJ (1994) Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13:1119–1129PubMedCrossRefGoogle Scholar
  63. 63.
    Hugo S, Dembla E, Halimani M, Matti U, Rettig J, Becherer U (2013) Deciphering dead-end docking of large dense core vesicles in bovine chromaffin cells. J Neurosci 33:17123–17137. doi: 10.1523/JNEUROSCI.1589-13.2013 PubMedCrossRefGoogle Scholar
  64. 64.
    Iijima T, Matsumoto G, Kidokoro Y (1992) Synaptic activation of rat adrenal medulla examined with a large photodiode array in combination with a voltage-sensitive dye. Neuroscience 51:211–219PubMedCrossRefGoogle Scholar
  65. 65.
    Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ (2015) Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 20:810–819. doi: 10.1038/mp.2015.56 PubMedCrossRefGoogle Scholar
  66. 66.
    Kabachinski G, Yamaga M, Kielar-Grevstad DM, Bruinsma S, Martin TF (2014) CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Mol Biol Cell 5:508–521. doi: 10.1091/mbc.E12-11-0829 CrossRefGoogle Scholar
  67. 67.
    Kidokoro Y, Ritchie AK (1980) Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol 307:199–216PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP (2006) Dense-core secretory granule biogenesis. Physiology (Bethesda) 21:124–133. doi: 10.1152/physiol.00043.2005 Google Scholar
  69. 69.
    Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J 72:674–690PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Laduron P, Belpaire F (1968) Tissue fractionation and catecholamines II. Intracellular distribution patterns of tyrosine hydroxylase, dopa decarboxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla. Biochem Pharmacol 17:1127–1140PubMedCrossRefGoogle Scholar
  71. 71.
    Lai Y, Diao J, Cipriano DJ, Zhang Y, Pfuetzner RA, Padolina MS, Brunger AT (2014) Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms. eLife 3:e03756. doi: 10.7554/eLife.03756
  72. 72.
    Lara B, Gandia L, Martinez-Sierra R, Torres A, Garcia AG (1998) Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells. Pflugers Arch 435:472–478PubMedCrossRefGoogle Scholar
  73. 73.
    Lefkowitz JJ, DeCrescenzo V, Duan K, Bellve KD, Fogarty KE, Walsh JV Jr, ZhuGe R (2014) Catecholamine exocytosis during low frequency stimulation in mouse adrenal chromaffin cells is primarily asynchronous and controlled by the novel mechanism of Ca2+ syntilla suppression. J Physiol 592:4639–4655. doi: 10.1113/jphysiol.2014.278127 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lin MY, Rohan JG, Cai H, Reim K, Ko CP, Chow RH (2013) Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems. J Physiol 591:2463–2473. doi: 10.1113/jphysiol.2012.244517 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Liu J, Guo T, Wei Y, Liu M, Sui SF (2006) Complexin is able to bind to SNARE core complexes in different assembled states with distinct affinity. Biochem Biophys Res Commun 347:413–419. doi: 10.1016/j.bbrc.2006.06.085 PubMedCrossRefGoogle Scholar
  76. 76.
    Liu Y, Schirra C, Edelmann L, Matti U, Rhee J, Hof D, Bruns D, Brose N, Rieger H, Stevens DR, Rettig J (2010) Two distinct secretory vesicle-priming steps in adrenal chromaffin cells. J Cell Biol 190:1067–1077. doi: 10.1083/jcb.201001164 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Liu Y, Schirra C, Stevens DR, Matti U, Speidel D, Hof D, Bruns D, Brose N, Rettig J (2008) CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles. J Neurosci 28:5594–5601. doi: 10.1523/JNEUROSCI.5672-07.2008 PubMedCrossRefGoogle Scholar
  78. 78.
    Lomax RB, Michelena P, Nunez L, Garcia-Sancho J, Garcia AG, Montiel C (1997) Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am J Phys 272:C476–C484CrossRefGoogle Scholar
  79. 79.
    Luccardini C, Yakovlev AV, Pasche M, Gaillard S, Li D, Rousseau F, Ly R, Becherer U, Mallet JM, Feltz A, Oheim M (2009) Measuring mitochondrial and cytoplasmic Ca2+ in EGFP expressing cells with a low-affinity calcium ruby and its dextran conjugate. Cell Calcium 45:275–283. doi: 10.1016/j.ceca.2008.11.007 PubMedCrossRefGoogle Scholar
  80. 80.
    Ma C, Li W, Xu Y, Rizo J (2011) Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat Struct Mol Biol 18:542–549. doi: 10.1038/nsmb.2047 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Man KN, Imig C, Walter AM, Pinheiro PS, Stevens DR, Rettig J, Sørensen JB, Cooper BH, Brose N, Wojcik SM (2015) Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. eLife 4. doi: 10.7554/eLife.10635
  82. 82.
    Marengo FD (2005) Calcium gradients and exocytosis in bovine adrenal chromaffin cells. Cell Calcium 38:87–99. doi: 10.1016/j.ceca.2005.06.006 PubMedCrossRefGoogle Scholar
  83. 83.
    Marengo FD, Monck JR (2000) Development and dissipation of Ca(2+) gradients in adrenal chromaffin cells. Biophys J 79:1800–1820. doi: 10.1016/S0006-3495(00)76431-9 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Marengo FD, Monck JR (2003) Spatial distribution of Ca(2+) signals during repetitive depolarizing stimuli in adrenal chromaffin cells. Biophys J 85:3397–3417. doi: 10.1016/S0006-3495(03)74759-6 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Martinez-Espinosa PL, Yang C, Gonzalez-Perez V, Xia XM, Lingle CJ (2014) Knockout of the BK beta 2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity. J Gen Physiol 144:275–295. doi: 10.1085/jgp.201411253 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Maximov A, Tang J, Yang X, Pang ZP, Südhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–521. doi: 10.1126/science.1166505 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mohrmann R, de Wit H, Connell E, Pinheiro PS, Leese C, Bruns D, Davletov B, Verhage M, Sørensen JB (2013) Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J Neurosci 33:14417–14430. doi: 10.1523/JNEUROSCI.1236-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Monck JR, Robinson IM, Escobar AL, Vergara JL, Fernandez JM (1994) Pulsed laser imaging of rapid Ca2+ gradients in excitable cells. Biophys J 67:505–514. doi: 10.1016/S0006-3495(94)80554-5 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Moser T, Neher E (1997) Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices. J Neurosci 17:2314–2323PubMedGoogle Scholar
  90. 90.
    Moya-Diaz J, Alvarez YD, Montenegro M, Bayones L, Belingheri AV, Gonzalez-Jamett AM, Cardenas AM, Marengo FD (2016) Sustained exocytosis after action potential-like stimulation at low frequencies in mouse chromaffin cells depends on a dynamin-dependent fast endocytotic process. Front Cell Neurosci 10:184. doi: 10.3389/fncel.2016.00184 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Nagy G, Kim JH, Pang ZP, Matti U, Rettig J, Südhof TC, Sørensen JB (2006) Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci 26:632–643. doi: 10.1523/JNEUROSCI.2589-05.2006 PubMedCrossRefGoogle Scholar
  92. 92.
    Neco P, Fernández-Peruchena C, Navas S, Gutiérrez LM, de Toledo GA, Alés E (2008) Myosin II contributes to fusion pore expansion during exocytosis. J Biol Chem 283:10949–10957. doi: 10.1074/jbc.M709058200 PubMedCrossRefGoogle Scholar
  93. 93.
    Neco P, Giner D, Viniegra S, Borges R, Villarroel A, Gutiérrez LM (2004) New roles of myosin II during vesicle transport and fusion in chromaffin cells. J Biol Chem 279:27450–27457. doi: 10.1074/jbc.M311462200 PubMedCrossRefGoogle Scholar
  94. 94.
    Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399PubMedCrossRefGoogle Scholar
  95. 95.
    Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol 450:273–301PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Neher E, Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21–30PubMedCrossRefGoogle Scholar
  97. 97.
    Ngatchou AN, Kisler K, Fang Q, Walter AM, Zhao Y, Bruns D, Sørensen JB, Lindau M (2010) Role of the synaptobrevin C terminus in fusion pore formation. Proc Natl Acad Sci U S A 107:18463–18468. doi: 10.1073/pnas.1006727107 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Nguyen Truong CQ, Nestvogel D, Ratai O, Schirra C, Stevens DR, Brose N, Rhee J, Rettig J (2014) Secretory vesicle priming by CAPS is independent of its SNARE-binding MUN domain. Cell Rep 9:902–909. doi: 10.1016/j.celrep.2014.09.050 PubMedCrossRefGoogle Scholar
  99. 99.
    Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A, Carbone E (2004) Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558:433–449. doi: 10.1113/jphysiol.2004.061184 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64:77–91. doi: 10.1016/S0006-3495(93)81342-0 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Oelkers M, Witt H, Halder P, Jahn R, Janshoff A (2016) SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. Proc Natl Acad Sci U S A 113:13051–13056. doi: 10.1073/pnas.1615885113 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Olivares MJ, González-Jamett AM, Guerra MJ, Baez-Matus X, Haro-Acuña V, Martínez-Quiles N, Cárdenas AM (2014) Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells. PLoS One 9:e99001. doi: 10.1371/journal.pone.0099001 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    O’Sullivan AJ, Cheek TR, Moreton RB, Berridge MJ, Burgoyne RD (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J 8:401–411PubMedPubMedCentralGoogle Scholar
  104. 104.
    Papadopulos A, Gomez GA, Martin S, Jackson J, Gormal RS, Keating DJ, Yap AS, Meunier FA (2015) Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking. Nat Commun 6:6297. doi: 10.1038/ncomms7297 PubMedCrossRefGoogle Scholar
  105. 105.
    Papadopulos A, Martin S, Tomatis VM, Gormal RS, Meunier FA (2013) Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites. J Neurosci 33:19143–19153. doi: 10.1523/JNEUROSCI.2634-13.2013 PubMedCrossRefGoogle Scholar
  106. 106.
    Parsaud L, Li L, Jung CH, Park S, Saw NM, Park S, Kim MY, Sugita S (2013) Calcium-dependent activator protein for secretion 1 (CAPS1) binds to syntaxin-1 in a distinct mode from Munc13-1. J Biol Chem 288:23050–23063. doi: 10.1074/jbc.M113.494088 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Pasche M, Matti U, Hof D, Rettig J, Becherer U (2012) Docking of LDCVs is modulated by lower intracellular [Ca2+] than priming. PLoS One 7:e36416. doi: 10.1371/journal.pone.0036416 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Pérez-Lara Á, Thapa A, Nyenhuis SB, Nyenhuis DA, Halder P, Tietzel M, Tittmann K, Cafiso DS, Jahn R (2016) PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. eLife 5. doi: 10.7554/eLife.15886
  109. 109.
    Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560:413–428. doi: 10.1113/jphysiol.2004.064410 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Pinheiro PS, Houy S, Sørensen JB (2016) C2-domain containing calcium sensors in neuroendocrine secretion. J Neurochem 139:943–958. doi: 10.1111/jnc.13865 PubMedCrossRefGoogle Scholar
  111. 111.
    Rao TC, Passmore DR, Peleman AR, Das M, Chapman ER, Anantharam A (2014) Distinct fusion properties of synaptotagmin-1 and synaptotagmin-7 bearing dense core granules. Mol Biol Cell 25:2416–2427PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rudolf R, Salm T, Rustom A, Gerdes HH (2001) Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 12:1353–1365PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Samasilp P, Chan SA, Smith C (2012) Activity-dependent fusion pore expansion regulated by a calcineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells. J Neurosci 32:10438–10447. doi: 10.1523/JNEUROSCI.1299-12.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Schaub JR, Lu X, Doneske B, Shin YK, McNew JA (2006) Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat Struct Mol Biol 13:748–750. doi: 10.1038/nsmb1124 PubMedCrossRefGoogle Scholar
  115. 115.
    Segovia M, Alés E, Montes MA, Bonifas I, Jemal I, Lindau M, Maximov A, Südhof TC, Alvarez de Toledo G (2010) Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci U S A 107:19032–11907. doi: 10.1073/pnas.1014070107 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Segura J, Gil A, Soria B (2000) Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters. Biophys J 79:1771–1786. doi: 10.1016/S0006-3495(00)76429-0 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Shupliakov O, Haucke V, Pechstein A (2011) How synapsin I may cluster synaptic vesicles. Semin Cell Dev Biol 22:393–399. doi: 10.1016/j.semcdb.2011.07.006 PubMedCrossRefGoogle Scholar
  118. 118.
    Simon SM, Llinas RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48:485–498. doi: 10.1016/S0006-3495(85)83804-2 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418PubMedCrossRefGoogle Scholar
  120. 120.
    Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Archiv 448:347–362. doi: 10.1007/s00424-004-1247-8 PubMedCrossRefGoogle Scholar
  121. 121.
    Stevens DR, Schirra C, Becherer U, Rettig J (2011) Vesicle pools: lessons from adrenal chromaffin cells. Front Synaptic Neurosci 3:2. doi: 10.3389/fnsyn.2011.00002 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477. doi: 10.1126/science.1161748 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Takahashi H, Shahin V, Henderson RM, Takeyasu K, Edwardson JM (2010) Interaction of synaptotagmin with lipid bilayers, analyzed by single-molecule force spectroscopy. Biophys J 99:2550–2558. doi: 10.1016/j.bpj.2010.08.047 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Tomatis VM, Papadopulos A, Malintan NT, Martin S, Wallis T, Gormal RS, Kendrick-Jones J, Buss F, Meunier FA (2013) Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. J Cell Biol 200:301–320. doi: 10.1083/jcb.201204092 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Toonen RF, Kochubey O, de Wit H, Gulyas-Kovacs A, Konijnenburg B, Sørensen JB, Klingauf J, Verhage M (2006) Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J 25:3725–3737. doi: 10.1038/sj.emboj.7601256 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Toonen RF, Verhage M (2007) Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci 30:564–572. doi: 10.1016/j.tins.2007.08.008 PubMedCrossRefGoogle Scholar
  127. 127.
    Torregrosa-Hetland CJ, Villanueva J, Giner D, Lopez-Font I, Nadal A, Quesada I, Viniegra S, Expósito-Romero G, Gil A, Gonzalez-Velez V, Segura J, Gutiérrez LM (2011) The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells. J Cell Sci 124:727–734. doi: 10.1242/jcs.078600 PubMedCrossRefGoogle Scholar
  128. 128.
    Torregrosa-Hetland CJ, Villanueva J, López-Font I, Garcia-Martinez V, Gil A, Gonzalez-Vélez V, Segura J, Viniegra S, Gutiérrez LM (2010) Association of SNAREs and calcium channels with the borders of cytoskeletal cages organizes the secretory machinery in chromaffin cells. Cell Mol Neurobiol 30:1315–1319. doi: 10.1007/s10571-010-9565-1 PubMedCrossRefGoogle Scholar
  129. 129.
    Trouillon R, Ewing AG (2013) Amperometric measurements at cells support a role for dynamin in the dilation of the fusion pore during exocytosis. ChemPhysChem 14:2295–2301. doi: 10.1002/cphc.201300319 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tryoen-Tóth P, Chasserot-Golaz S, Tu A, Gherib P, Bader MF, Beaumelle B, Vitale N (2013) HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. J Cell Sci 126:454–463. doi: 10.1242/jcs.111658 PubMedCrossRefGoogle Scholar
  131. 131.
    Tsai CC, Yang CC, Shih PY, Wu CS, Chen CD, Pan CY, Chen YT (2008) Exocytosis of a single bovine adrenal chromaffin cell: the electrical and morphological studies. J Phys Chem B 112:9165–9173. doi: 10.1021/jp803000a PubMedCrossRefGoogle Scholar
  132. 132.
    Umbrecht-Jenck E, Demais V, Calco V, Bailly Y, Bader MF, Chasserot-Golaz S (2010) S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis. Traffic 11:958–971. doi: 10.1111/j.1600-0854.2010.01065.x PubMedCrossRefGoogle Scholar
  133. 133.
    van Weering JR, Wijntjes R, de Wit H, Wortel J, Cornelisse LN, Veldkamp WJ, Verhage M (2008) Automated analysis of secretory vesicle distribution at the ultrastructural level. J Neurosci Methods 173:83–90. doi: 10.1016/j.jneumeth.2008.05.022 PubMedCrossRefGoogle Scholar
  134. 134.
    Vandael DH, Ottaviani MM, Legros C, Lefort C, Guerineau NC, Allio A, Carabelli V, Carbone E (2015) Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells. J Physiol 593:905–927. doi: 10.1113/jphysiol.2014.283374 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353. doi: 10.1096/fj.01-0630com PubMedCrossRefGoogle Scholar
  136. 136.
    Villanueva M, Thornley K, Augustine GJ, Wightman RM (2006) Synapsin II negatively regulates catecholamine release. Brain Cell Biol 35:125–136. doi: 10.1007/s11068-007-9015-2 PubMedCrossRefGoogle Scholar
  137. 137.
    Vitale ML, Seward EP, Trifaró JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363PubMedCrossRefGoogle Scholar
  138. 138.
    Voets T (2000) Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28:537–545PubMedCrossRefGoogle Scholar
  139. 139.
    Voets T, Moser T, Lund PE, Chow RH, Geppert M, Sudhof TC, Neher E (2001) Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc Natl Acad Sci U S A 98:11680–11685. doi: 10.1073/pnas.201398798 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Voets T, Neher E, Moser T (1999) Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23:607–615PubMedCrossRefGoogle Scholar
  141. 141.
    Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Südhof TC, Neher E, Verhage M (2001) Munc18-1 promotes large dense-core vesicle docking. Neuron 31:581–591PubMedCrossRefGoogle Scholar
  142. 142.
    Walter AM, Pinheiro PS, Verhage M, Sorensen JB (2013) A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion. PLoS Comput Biol 9:e1003362. doi: 10.1371/journal.pcbi.1003362 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wang CT, Bai J, Chang PY, Chapman ER, Jackson MB (2006) Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J Physiol 570:295–307. doi: 10.1113/jphysiol.2005.097378 PubMedCrossRefGoogle Scholar
  144. 144.
    Wang S, Li Y, Ma C (2016) Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 5. doi: 10.7554/eLife.14211
  145. 145.
    Wang Z, Liu H, Gu Y, Chapman ER (2011) Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion. J Cell Biol 195:1159–1170. doi: 10.1083/jcb.201104079 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wen PJ, Grenklo S, Arpino G, Tan X, Liao HS, Heureaux J, Peng SY, Chiang HC, Hamid E, Zhao WD, Shin W, Näreoja T, Evergren E, Jin Y, Karlsson R, Ebert SN, Jin A, Liu AP, Shupliakov O, Wu LG (2016) Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat Commun 7:12604. doi: 10.1038/ncomms12604 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wu Z, Bello OD, Thiyagarajan S, Auclair SM, Vennekate W, Krishnakumar SS, O'Shaughnessy B, Karatekin E (2017) Dilation of fusion pores by crowding of SNARE proteins. eLife 6. doi: 10.7554/eLife.22964
  148. 148.
    Wykes RC, Bauer CS, Khan SU, Weiss JL, Seward EP (2007) Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells. J Neurosci 27:5236–5248. doi: 10.1523/JNEUROSCI.3545-06.2007 PubMedCrossRefGoogle Scholar
  149. 149.
    Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, Zeldin OB, Brewster AS, Sauter NK, Cohen AE, Soltis SM, Alonso-Mori R, Chollet M, Lemke HT, Pfuetzner RA, Choi UB, Weis WI, Diao J, Südhof TC, Brunger AT (2015) Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature 525:62–67. doi: 10.1038/nature14975 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Zhou Z, Misler S (1995) Action potential-induced quantal secretion of catecholamines from rat adrenal chromaffin cells. J Biol Chem 270:3498–3505PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y NeurocienciasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  2. 2.Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de CienciasUniversidad de ValparaísoValparaisoChile

Personalised recommendations