Advertisement

Acetylcholine nicotinic receptor subtypes in chromaffin cells

  • Manuel CriadoEmail author
Invited Review

Abstract

In the adrenal gland, acetylcholine released on stimulation of the sympathetic splanchnic nerve activates neuronal-type nicotinic receptors (nAChRs) in chromaffin cells and triggers catecholamine secretion. At least two subtypes of nAChRs have been described in bovine chromaffin cells. The main subtype, a heteromeric assembly of α3, β4 and perhaps α5 subunits, is involved in the activation step of the catecholamine secretion process and is not blocked by the snake toxin α-bungarotoxin. The other is α-bungarotoxin-sensitive, and its functional role has not yet been well defined. The α7 subunit conforms the homomeric structure of this subtype. All nAChR subunits share the same molecular organization and structural data at atomic resolution level are now available for some homomeric and heteromeric ensembles. The α3, β4 and α5 subunits are clustered in genomes of different species, with the transcription factor Sp1 playing a co-ordinating role in the transcriptional regulation of these three subunits. The transcription factor Egr-1 controls the differential expression of α7 nAChR in adrenergic chromaffin cells, as happens with the enzyme phenylethanolamine N-methyl transferase. For unknown reasons, whole cell currents observed in bovine chromaffin cells clearly differ of the ones observed when different combinations of subunit RNAs are injected in oocytes. In addition to the typical nicotinic ligands, a variety of unrelated substances with clinical relevance can target nAChRs in chromaffin cells and, therefore, affect catecholamine secretion. They can act as agonists, antagonists or allosteric modulators.

Keywords

Adrenal medulla Cholinergic transmission Catecholamine Nicotinic receptor Subtypes Ligands 

Notes

Acknowledgements

I would like to thank Prof. Antonio García for his advice and enthusiasm when talking about chromaffin cells, for being a model of politeness and perseverance and finally, and most important, for his friendship. Research at lab’s author has been funded by several grants of the Spanish Government, the most recent by Ministerio de Economía y Competitividad (BFU2015-63684-P).

References

  1. 1.
    Aldea M, Mulet J, Sala S, Sala F, Criado M (2007) Non-charged amino acids from three different domains contribute to link agonist binding to channel gating in α7 nicotinic acetylcholine receptors. J Neurochem 103:725–735CrossRefPubMedGoogle Scholar
  2. 2.
    Aldea M, Castillo M, Mulet J, Sala S, Criado M, Sala F (2010) Role of the extracellular transmembrane domain interface in gating and pharmacology of a heteromeric neuronal nicotinic receptor. J Neurochem 113:1036–1045CrossRefPubMedGoogle Scholar
  3. 3.
    Arias E, Alés E, Gabilan NH, Cano-Abad MF, Villarroya M, García AG, López MG (2004) Galantamine prevents apoptosis induced by beta-amyloid and thapsigargin: involvement of nicotinic acetylcholine receptors. Neuropharmacology 46:103–114CrossRefPubMedGoogle Scholar
  4. 4.
    Balsera B, Mulet J, Fernández-Carvajal A, de la Torre-Martínez R, Ferrer-Montiel A, Hernández-Jiménez JG, Estévez-Herrera J, Borges R, Freitas AE, López MG, García-López MT, González-Muñiz R, Pérez de Vega MJ, Valor LM, Svobodová L, Sala S, Sala F, Criado M (2014) Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure. Eur J Med Chem 86:724–739CrossRefPubMedGoogle Scholar
  5. 5.
    Beckmann AM, Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31:477–510CrossRefPubMedGoogle Scholar
  6. 6.
    Benfante R, Flora A, Di Lascio S, Cargnin F, Longhi R, Colombo S, Clementi F, Fornasari D (2007) Transcription factor PHOX2A regulates the human α3 nicotinic receptor subunit gene promoter. J Biol Chem 282:13290–13302CrossRefPubMedGoogle Scholar
  7. 7.
    Boulter J, Evans K, Martin G, Treco D, Heinemann S, Patrick J (1986) Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine α subunit. Nature 319:368–374CrossRefPubMedGoogle Scholar
  8. 8.
    Boulter J, O’Shea-Greenfield A, Duvoisin RM, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, McKinnon D, Heinemann S, Patrick J (1990) α3, α5 and β4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265:4472–4482PubMedGoogle Scholar
  9. 9.
    Campos-Caro A, Sala S, Ballesta JJ, Vicente-Agulló F, Criado M, Sala F (1996) A single residue in the M2-M3 loop is a major determinant of coupling between binding and gating in neuronal nicotinic receptors. Proc Natl Acad Sci U S A 93:6118–6123CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Campos-Caro A, Smillie FI, Domínguez del Toro E, Rovira JC, Vicente-Agulló F, Chapuli J, Juíz JM, Sala S, Sala F, Ballesta JJ, Criado M (1997) Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: cloning expression and genomic organization of receptor subunits. J Neurochem 68:488–497CrossRefPubMedGoogle Scholar
  11. 11.
    Campos-Caro A, Carrasco-Serrano C, Valor LM, Viniegra S, Ballesta JJ, Criado M (1999) Multiple functional Sp1 domains in the minimal promoter region of the neuronal nicotinic receptor α5 subunit gene. J Biol Chem 274:4693–4701CrossRefPubMedGoogle Scholar
  12. 12.
    Carrasco-Serrano C, Campos-Caro A, Viniegra S, Ballesta JJ, Criado M (1998) GC- and E-box motifs as regulatory elements in the proximal promoter region of the neuronal nicotinic receptor α7 subunit gene. J Biol Chem 273:20021–20028CrossRefPubMedGoogle Scholar
  13. 13.
    Carrasco-Serrano C, Criado M (2004) Glucocorticoid activation of the neuronal nicotinic acetylcholine receptor α7 subunit gene: involvement of transcription factor Egr-1. FEBS Lett 566:247–250CrossRefPubMedGoogle Scholar
  14. 14.
    Carrasco-Serrano C, Viniegra S, Ballesta JJ, Criado M (2000) Phorbol ester activation of the neuronal nicotinic acetylcholine receptor α7 subunit gene. Involvement of transcription factor Egr-1. J Neurochem 74:932–939CrossRefPubMedGoogle Scholar
  15. 15.
    Castillo M, Mulet J, Aldea M, Gerber S, Sala S, Sala F, Criado M (2009) Role of the N-terminal α-helix in biogenesis of α7 nicotinic receptors. J Neurochem 108:1399–1409CrossRefPubMedGoogle Scholar
  16. 16.
    Cecchini M, Changeux JP (2015) The nicotinic acetylcholine receptor and its prokaryotic homologues: structure, conformational transitions & allosteric modulation. Neuropharmacology 96(Pt B):137–149CrossRefPubMedGoogle Scholar
  17. 17.
    Clapham DE, Neher E (1984) Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells. J Physiol 347:255–277CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Collingridge GL, Olsen RW, Peters J, Spedding M (2009) Neuropharmacology 56:2–5CrossRefPubMedGoogle Scholar
  19. 19.
    Criado M, Mulet J, Bernal JA, Gerber S, Sala S, Sala F (2005) Mutations of a conserved lysine residue in the N-terminal domain of α7 nicotinic receptors affect binding and gating of nicotinic agonists. Mol Pharmacol 68:1669–1677PubMedGoogle Scholar
  20. 20.
    Criado M, Castillo M, Mulet J, Sala F, Sala S (2010) Role of loop 9 on the function of neuronal nicotinic receptors. Biochim Biophys Acta Biomembr 1798:654–659CrossRefGoogle Scholar
  21. 21.
    Criado M, Alamo L, Navarro A (1992) Primary structure of an agonist binding subunit of the nicotinic acetylcholine receptor from bovine adrenal chromaffin cells. Neurochem Res 17:281–287CrossRefPubMedGoogle Scholar
  22. 22.
    Criado M, Domínguez del Toro E, Carrasco-Serrano C, Smillie FI, Juíz JM, Viniegra S, Ballesta JJ (1997) Differential expression of α-bungarotoxin-sensitive neuronal nicotinic receptors in adrenergic chromaffin cells: a role for transcription factor Egr-1. J Neurosci 17:6554–6564PubMedGoogle Scholar
  23. 23.
    Criado M, Valor LM, Mulet J, Gerber S, Sala S, Sala F (2012) Expression and functional properties of α7 acetylcholine nicotinic receptors are modified in the presence of other receptor subunits. J Neurochem 123:504–514CrossRefPubMedGoogle Scholar
  24. 24.
    Criado M, Mulet J, Sala F, Sala S, Colmena I, Gandía L, Bautista-Aguilera OM, Samadi A, Chioua M, Marco-Contelles J (2016) N-Benzylpiperidine derivatives as α7 nicotinic receptor antagonists. ACS Chem Neurosci 7:1157–1165CrossRefPubMedGoogle Scholar
  25. 25.
    Dani JA (2015) Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol 124:3–19CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    del Barrio L, Egea J, León R, Romero A, Ruiz A, Montero M, Alvarez J, López MG (2011) Calcium signalling mediated through α7 and non-α7 nAChR stimulation is differentially regulated in bovine chromaffin cells to induce catecholamine release. Br J Pharmacol 162:94–110CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Di Angelantonio S, Giniatullin R, Costa V, Sokolova E, Nistri A (2003) Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells. Brit J Pharmacol 139:1061–1073CrossRefGoogle Scholar
  28. 28.
    Di Angelantonio S, Costa V, Carloni P, Messori L, Nistri A (2002) A novel class of peptides with facilitating action on neuronal nicotinic receptors of rat chromaffin cells in vitro: functional and molecular dynamics studies. Mol Pharmacol 61:43–54CrossRefPubMedGoogle Scholar
  29. 29.
    Douglas WW, Poisner AM (1965) Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature 208:1102–1103CrossRefPubMedGoogle Scholar
  30. 30.
    Douglas WW, Rubin RP (1961) Mechanism of nicotinic action at the adrenal medulla: calcium as a link in stimulus-secretion coupling. Nature 192:1087–1089CrossRefPubMedGoogle Scholar
  31. 31.
    Du J, Lü W, Wu S, Cheng Y, Gouaux E (2015) Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526:224–229CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ebert SN, Balt SL, Hunter JPB, Gashler A, Sukhatme V, Wong DL (1994) Egr-1 activation of rat adrenal phenylethanolamine N-methyl-transferase gene. J Biol Chem 269:20885–20898PubMedGoogle Scholar
  33. 33.
    Fayuk D, Yakel JL (2007) Dendritic Ca2+ signalling due to activation of alpha7-containing nicotinic acetylcholine receptors in rat hippocampal neurons. J Physiol 582:597–611CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Feldberg W, Minz B, Tsudzimura H (1934) The mechanism of the nervous discharge of adrenaline. J Physiol 81:286–304CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and their sensitivity to acetylcholine. J Physiol 331:577–597CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fornasari D, Battaglioli E, Terzano S, Clementi F (1998) Transcriptional regulation of neuronal nicotinic receptor subunit genes. In: Arneric SP, Brioni JD (eds) Neuronal nicotinic receptors: pharmacology and therapeutic opportunities. Wiley-Liss, New York, pp 25–42Google Scholar
  37. 37.
    Gahring LC, Rogers SW (2006) Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. AAPS J 7:E885–E894CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gandía L, Villarroya M, Lara B, Olmos V, Gilabert JA, López MG, Martínez-Sierra R, Borges R, García AG (1996) Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells. Br J Pharmacol 117:463–470CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    García-Guzmán M, Sala F, Sala S, Campos-Caro A, Stühmer W, Gutiérrez LM, Criado M (1995) α-Bungarotoxin-sensitive nicotinic receptors on bovine chromaffin cells: molecular cloning, functional expression and alternative splicing of the α7 subunit. Eur J Neurosci 7:647–655CrossRefPubMedGoogle Scholar
  40. 40.
    Geertsen S, Trifaró J-M, Quik M (1992) Phorbol esters and K+ up-regulate α-bungarotoxin binding sites in cultured chromaffin cells through a related mechanism. Neurosci Lett 148:207–210CrossRefPubMedGoogle Scholar
  41. 41.
    González-Rubio JM, García de Diego AM, Egea J, Olivares R, Rojo J, Gandía L, García AG, Hernández-Guijo JM (2006) Blockade of nicotinic receptors of bovine adrenal chromaffin cells by nanomolar concentrations of atropine. Eur J Pharmacol 535:13–24CrossRefPubMedGoogle Scholar
  42. 42.
    Haghighi AP, Cooper E (2000) A molecular link between inward rectification and calcium permeability of neuronal nicotinic acetylcholine α3β4 and α4β2 receptors. J Neurosci 20:529–541PubMedGoogle Scholar
  43. 43.
    Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, Hovius R, Graff A, Stahlberg H, Tomizaki T, Desmyter A, Moreau C, Li XD, Poitevin F, Vogel H, Nury H (2014) X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512:276–281CrossRefPubMedGoogle Scholar
  44. 44.
    Higgins LS, Berg DK (1988) A desensitized form of neuronal acetylcholine receptor detected by 3H-nicotine binding on bovine adrenal chromaffin cells. J Neurosci 8:1436–1446PubMedGoogle Scholar
  45. 45.
    Higgins LS, Berg DK (1987) Immunological identification of a nicotinic acetylcholine receptor on bovine chromaffin cells. J Neurosci 7:1792–1798PubMedGoogle Scholar
  46. 46.
    Holz RW, Senter RA (1981) Choline stimulates nicotinic receptors on adrenal medullary chromaffin cells to induce catecholamine secretion. Science 214:466–468CrossRefPubMedGoogle Scholar
  47. 47.
    Jensen M, Hoerndli FJ, Brockie PJ, Wang R, Johnson E, Maxfield D, Francis MM, Madsen DM, Maricq AV (2012) Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 149:173–187CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kidokoro Y, Miyazaki S, Ozawa S (1982) Acetylcholine induced membrane depolarization and potential fluctuations in the rat adrenal chromaffin cell. J Physiol 324:203–220CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kim DC, Park YS, Jun DJ, Hur EM, Kim SH, Choi BH, Kim KT (2006) N-(4-Trifluoromethylphenyl)amide group of the synthetic histamine receptor agonist inhibits nicotinic acetylcholine receptor-mediated catecholamine secretion. Biochem Pharmacol 71:670–682CrossRefPubMedGoogle Scholar
  50. 50.
    Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Cys-loop receptors: new twists and turns. Trends Neurosci 27:329–336CrossRefPubMedGoogle Scholar
  51. 51.
    Liu PS, Liaw CT, Lin MK, Shin SH, Kao LS, Lin LF (2003) Amphetamine enhances Ca2+ entry and catecholamine release via nicotinic receptor activation in bovine adrenal chromaffin cells. Eur J Pharmacol 460:9–17CrossRefPubMedGoogle Scholar
  52. 52.
    Lopez MG, Montiel C, Herrero CJ, Garcia-Palomero E, Mayorgas I, Hernandez-Guijo JM, Villarroya M, Olivares R, Gandia L, McIntosh JM, Olivera BM, Garcia AG (1998) Unmasking the functions of the chromaffin cell α7 nicotinic receptor by using short pulses of acetylcholine and selective blockers. Proc Natl Acad Sci U S A 95:14184–14189CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Maconochie DJ, Knight DE (1992) A study of the bovine adrenal chromaffin nicotinic receptor using patch clamp and concentration-jump techniques. J Physiol 454:129–153CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Maconochie DJ, Knight DE (1992) Markov modelling of ensemble current relaxations: bovine adrenal nicotinic receptor currents analysed. J Physiol 454:155–182CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mahata SK, Mahata M, Wen G, Wong WB, Mahapatra NR, Hamilton BA, O'Connor DT (2004) The catecholamine release-inhibitory "catestatin" fragment of chromogranin a: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses. Mol Pharmacol 66:1180–1191CrossRefPubMedGoogle Scholar
  56. 56.
    Maneu V, Rojo J, Mulet J, Valor LM, Sala F, Criado M, Garcia AG, Gandia L (2002) A single neuronal nicotinic receptor alpha3alpha7beta4* is present in the bovine chromaffin cell. Ann N Y Acad Sci 971:165–167CrossRefPubMedGoogle Scholar
  57. 57.
    Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512:270–275CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Molloy L, Wonnacott S, Gallagher T, Brough PA, Livett BG (1995) Anatoxin-a is a potent agonist of the nicotinic acetylcholine receptor of bovine adrenal chromaffin cells. Eur J Pharmacol 289:447–453CrossRefPubMedGoogle Scholar
  59. 59.
    Morales-Perez CL, Noviello CM, Hibbs RE (2016) X-ray structure of the human α4β2 nicotinic receptor. Nature 538:411–415CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Navarro E, Buendia I, Parada E, León R, Jansen-Duerr P, Pircher H, Egea J, Lopez MG (2015) Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochem Pharmacol 97:473–481CrossRefPubMedGoogle Scholar
  61. 61.
    Nemecz Á, Prevost MS, Menny A, Corringer PJ (2016) Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90:452–470CrossRefPubMedGoogle Scholar
  62. 62.
    Nooney JM, Peters JA, Lambert JJ (1992) A patch clamp study of the nicotinic acetylcholine receptor of bovine adrenomedullary chromaffin cells in culture. J Physiol 455:503–527CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Nooney JM, Feltz A (1995) Inhibition by cyclothiazide of neuronal nicotinic responses in bovine chromaffin cells. Br J Pharmacol 114:648–655CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rucktooa P, Smit AB, Sixma TK (2009) Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol 78:777–787CrossRefPubMedGoogle Scholar
  65. 65.
    Sala F, Nistri A, Criado M (2008) Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiol (Oxf) 192:203–212CrossRefGoogle Scholar
  66. 66.
    Sala F, Mulet J, Sala S, Gerber S, Criado M (2005) Charged amino acids of the N-terminal domain are involved in coupling binding and gating in α7 nicotinic receptors. J Biol Chem 280:6642–6647CrossRefPubMedGoogle Scholar
  67. 67.
    Texido L, Ros E, Martin-Satue M, Lopez S, Aleu J, Marsal J, Solsona C (2005) Effect of galantamine on the human alpha7 neuronal nicotinic acetylcholine receptor, the torpedo nicotinic acetylcholine receptor and spontaneous cholinergic synaptic activity. Brit J Pharmacol 145:672–678CrossRefGoogle Scholar
  68. 68.
    Valor LM, Campos-Caro A, Carrasco-Serrano C, Ortíz JA, Ballesta JJ, Criado M (2002) Transcription factors NF-Y and Sp1 are important determinants of the promoter activity of the bovine and human neuronal nicotinic receptor β4 subunit genes. J Biol Chem 277:8866–8876CrossRefPubMedGoogle Scholar
  69. 69.
    Wilson SP, Kirshner N (1977) The acetylcholine receptor of the adrenal medulla. J Neurochem 28:687–695CrossRefPubMedGoogle Scholar
  70. 70.
    Woo KC, Park YS, Jun DJ, Lim JO, Baek WY, Suh BS, Kim KT (2004) Phytoestrogen cimicifugoside-mediated inhibition of catecholamine secretion by blocking nicotinic acetylcholine receptor in bovine adrenal chromaffin cells. J Pharmacol Exp Ther 309:641–649CrossRefPubMedGoogle Scholar
  71. 71.
    Yang X, Fyodorov D, Deneris ES (1995) Transcriptional analysis of acetylcholine receptor α3 gene promoter motifs that bind Sp1 and AP2. J Biol Chem 270:8514–8520CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang B, Madden P, Gu J, Xing X, Sankar S, Flynn J, Kroll K, Wang T (2017) Uncovering the transcriptomic and epigenomic landscape of nicotinic receptor genes in non-neuronal tissues. BMC Genomics 18:439CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhou Z, Neher E (1993) Calcium permeability of nicotinic acetylcholine receptor channels in bovine adrenal chromaffin cells. Pflugers Arch 425:511–517CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universidad Miguel Hernández-CSICInstituto de NeurocienciasAlicanteSpain

Personalised recommendations