Muscarinic receptors in adrenal chromaffin cells: physiological role and regulation of ion channels

  • Masumi InoueEmail author
  • Hidetada Matsuoka
  • Keita Harada
  • Lung-Sen KaoEmail author
Invited Review


Adrenal medullary chromaffin cells in mammals are innervated by sympathetic preganglionic nerve fibers, as are sympathetic ganglion neurons. Acetylcholine in the ganglion neurons is well established as mediating fast and slow excitatory postsynaptic potentials through nicotinic and muscarinic acetylcholine receptors (AChRs), respectively. The role of muscarinic AChRs during neuronal transmission in chromaffin cells varies among different mammals. Furthermore, the ion channel mechanisms associated with the muscarinic AChR-mediated increase in excitability of chromaffin cells are complicated and different from the excitation of ganglion neurons, which has been ascribed to the inhibition of M-type K+ channels. In this review, we focus on muscarinic receptor-mediated excitation in rodent and guinea pig chromaffin cells, in particular, on the role of muscarinic receptors in neuronal transmission, the muscarinic receptor subtypes involved in excitation and secretion, and the muscarinic regulation of ion channels including TWIK-related acid-sensitive K+ channels. Finally, we discuss prospectively the future of muscarinic receptor research in adrenal chromaffin cells.


Adrenal chromaffin cell Muscarinic receptor TASK channel TRPC channel Acetylcholine 



This work was supported in part by grants from JSPS KAKENHI (MI, HM, KH), a grant from the Salt Science Foundation (MI), and a grant from the Ministry of Education (Aim for the Top University Plan) (L-SK). We apologize for the missing citations of many studies that have contributed to the progress in the field.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ballesta JJ, Borges R, Garcia AG, Hidalgo MJ (1989) Secretory and radioligand binding studies on muscarinic receptors in bovine and feline chromaffin cells. J Physiol 418:411–426CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barbara J-G, Takeda K (1996) Quantal release at a neuronal nicotinic synapse from rat adrenal gland. Proc Natl Acad Sci U S A 93:9905–9906CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566–575CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Berg AP, Talley EM, Manger JP, Bayliss DA (2004) Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci 24:6693–6702CrossRefPubMedGoogle Scholar
  5. 5.
    Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE (2004) Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 6:709–720CrossRefPubMedGoogle Scholar
  6. 6.
    Brown DA, Selyanko AA (1985) Membrane currents underlying the cholinergic slow excitatory post-synaptic potential in the rat sympathetic ganglion. J Physiol 365:365–387CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen X, Talley EM, Patel N, Gomis A, Mcintire WE, Dong B, Viana F, Garrison JC, Bayliss DA (2006) Inhibition of a background potassium channel by Gq protein α-subunits. Proc Natl Acad Sci U S A 103:3422–2427CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524CrossRefPubMedGoogle Scholar
  9. 9.
    Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324CrossRefPubMedGoogle Scholar
  10. 10.
    Clausen T, Andersen SL, Flatman JA (1993) Na+-K+ pump stimulation elicits recovery of contractility in K+-paralysed rat muscle. J Physiol 472:521–536CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Coupland EE (1975) Blood supply of the adrenal gland. In: Blaschko H, Sayers G, Smith AD (eds) Handbook of physiology. Section 7 endocrinology, Adrenal gland, vol 6. American Physiological Society, Washington, DC, pp 283–294Google Scholar
  12. 12.
    Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303:436–444CrossRefPubMedGoogle Scholar
  13. 13.
    Czirjak G, Enyedi P (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 16:621–629CrossRefPubMedGoogle Scholar
  14. 14.
    D'Andrea P, Grohovaz F (1995) [Ca2+]i oscillations in rat chromaffin cells: frequency and amplitude modulation by Ca2+ and InsP3. Cell Calcium 17:367–374CrossRefPubMedGoogle Scholar
  15. 15.
    Douglas WW, Poisner AM (1965) Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine. Nature 208:1102–1103CrossRefPubMedGoogle Scholar
  16. 16.
    Eberhard DA, Holz RW (1987) Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J Neurochem 49:1634–1643CrossRefPubMedGoogle Scholar
  17. 17.
    Eng AG, Kelver DA, Hedrick TP, Swanson GT (2016) Transduction of group 1 mGluR-mediated synaptic plasticity by β-arrestin2 signalling. Nat Comm 7:13571. doi: 10.1038/ncomms13571 CrossRefGoogle Scholar
  18. 18.
    Feldberg W, Minz B, Tsudzimura H (1934) The mechanism of the nervous discharge of adrenaline. J Physiol 81:286–304CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Feliciangeli S, Chatelain FC, Bichet D, Lesage F (2015) The family of K2P channels: salient structural and functional properties. J Physiol 593:2587–2603CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fernandex-Fernandez JM, Wanaveerbecq N, Halley P, Caulfield MP, Brown DA (1999) Selective activation of heterologously expressed G protein-gated K+ channels by M2 muscarinic receptors in rat sympathetic neurones. J Physiol 515:631–637CrossRefGoogle Scholar
  21. 21.
    Forsberg EJ, Rojas E, Pollard HB (1986) Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem 261:4915–4920PubMedGoogle Scholar
  22. 22.
    Garcia AG, Garcia-de-Diego AM, Gandia L, Borges B, Garcia-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131CrossRefPubMedGoogle Scholar
  23. 23.
    Guo J, Schofield GG (2003) Activation of muscarinic m5 receptors inhibits recombinant KCNQ2/KCNQ3 K+ channels expressed in HEK293T cells. Eur J Pharmacol 462:25–32CrossRefPubMedGoogle Scholar
  24. 24.
    Guarina L, Vandael DHF, Carabelli V, Carbone E (2017) Low pHO boosts burst firing and catecholamine release by blocking TASK-1 and BK channels whole preserving Cav1 channels in mouse chromaffin cells. J Physiol 595:2587–2609CrossRefPubMedGoogle Scholar
  25. 25.
    Harada K, Matsuoka H, Miyata H, Matsui M, Inoue M (2015) Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion. Br J Pharmacol 172:1348–1359CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Harada K, Matsuoka H, Sata T, Warashina A, Inoue M (2011) Identification and role of muscarinic receptor subtypes expressed in rat adrenal medullary cells. J Pharmacol Sci 117:253–264CrossRefPubMedGoogle Scholar
  27. 27.
    Holman ME, Tonta MA, Coleman HA, Parkington HC (1998) Muscarinic receptor activation in guinea-pig chromaffin cells causes decreased membrane conductance and depolarization. J Auton Nerv Syst 68:140–144CrossRefPubMedGoogle Scholar
  28. 28.
    Huber K (2015) Segregation of neuronal and neuroendocrine differentiation in the sympathoadrenal lineage. Cell Tissue Res 359:333–341CrossRefPubMedGoogle Scholar
  29. 29.
    Inoue M, Fujishiro N, Imanaga I (1998) Hypoxia and cyanide induce depolarization and catecholamine release in dispersed guinea-pig chromaffin cells. J Physiol 507:807–818CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Inoue M, Harada K, Matsuoka H, Nakamura J, Warashina A (2012) Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells. Am J Physiol Cell Physiol 303:C635–C644CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Inoue M, Harada K, Matsuoka H, Sata T, Warashina A (2008) Inhibition of TASK1-like channels by muscarinic receptor stimulation in rat adrenal medullary cells. J Neurochem 106:1804–1814PubMedGoogle Scholar
  32. 32.
    Inoue M, Imanaga I (1993) G protein-mediated inhibition of inwardly rectifying K+ channels in guinea pig chromaffin cells. Am J Physiol Cell Physiol 265:C946–C956CrossRefGoogle Scholar
  33. 33.
    Inoue M, Imanaga I (1995) Mechanism of activation of nonselective cation channels by putative M4 muscarinic receptor in guinea-pig chromaffin cells. Br J Pharmacol 114:419–427CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Inoue M, lin H, Imanaga I, Ogawa K, Warashina A (2004) InsP3 receptor type 2 and oscillatory and monophasic Ca2+ transients in rat adrenal chromaffin cells. Cell Calcium 35:59–70CrossRefPubMedGoogle Scholar
  35. 35.
    Inoue M, Kuriyama H (1991) Muscarinic receptor is coupled with a cation channel through a GTP-binding protein in guinea-pig chromaffin cells. J Physiol 436:511–529CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Inoue M, Sakamoto Y, Fujishiro N, Imanaga I, Ozaki S, Prestwich GD, Warashina A (2003) Homogeneous Ca2+ stores in rat adrenal chromaffin cells. Cell Calcium 33:19–26CrossRefPubMedGoogle Scholar
  37. 37.
    Inoue M, Sakamoto Y, Imanaga I (1995) Phosphatidylinositol hydrolysis is involved in production of Ca2+-dependent currents, but not non-selective cation currents, by muscarine in chromaffin cells. Eur J Pharmacol 436:511–529Google Scholar
  38. 38.
    Jones MT, Hillhouse EW, Burden JL (1977) Dynamics and mechanics of corticosteroid feedback at the hypothalamus and anterior pituitary gland. J Endocrinol 73:405–417CrossRefPubMedGoogle Scholar
  39. 39.
    Jung S, Muhle A, Schaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiale TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278:3562–3571CrossRefPubMedGoogle Scholar
  40. 40.
    Kajiwara R, Sand O, Kidokoro Y, Barish ME, Iijima T (1997) Functional organization of chromaffin cells and cholinergic synaptic transmission in rat adrenal medulla. Jpn J Physiol 47:449–464CrossRefPubMedGoogle Scholar
  41. 41.
    Kang D, Han J, Talley EM, Bayliss DA, Kim D (2004) Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol 554:64–77CrossRefPubMedGoogle Scholar
  42. 42.
    Kao LS, Schneider AS (1985) Muscarinic receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium. J Biol Chem 260:2019–2022PubMedGoogle Scholar
  43. 43.
    Kao LS, Schneider AS (1986) Calcium mobilization and catecholamine secretion in adrenal chromaffin cells. A Quin-2 fluorescence study. J Biol Chem 261:4881–4888PubMedGoogle Scholar
  44. 44.
    Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol 587:2963–2975CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kirpekar SM, Prat JC, Schiavone MT (1982) Effect of muscarine on release of catecholamines from the perfused adrenal gland of the cat. Br J Pharmacol 77:455–460CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Knight DE, Baker PF (1986) Observations on the muscarinic activation of catecholamine secretion in the chicken adrenal. Neuroscience 19:357–366CrossRefPubMedGoogle Scholar
  47. 47.
    Krajewski JL, Dickerson IM, Potter LT (2001) Site-directed mutagenesis of m1-toxin1:two amino acids responsible for stable toxin binding to M1 muscarinic receptors. Mol Pharmacol 60:725–731PubMedGoogle Scholar
  48. 48.
    Ledbetter FH, Kirshner N (1975) Studies of chick adrenal medulla in organ culture. Biochem Pharmacol 24:967–974CrossRefPubMedGoogle Scholar
  49. 49.
    Liu C-H, Gong Z, Liang Z-L, Liu Z-X, Yang F, Sun Y-J, Ma M-L, Wang Y-J, Ji CR, Wang YH, Wang MJ, Cui F-A, Lin A, Zheng W-S, He D-F, Qu C-X, Xkiao P, Liu C-Y, Thomsen ARB, Cahill TJ, Kahsai AW, Yi FG, Xiao K-H, Xue T, Zhou Z, Yu X, Sun J-P (2017) Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling. Nat Commun 8:14335. doi: 10.1038/ncomms14335 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Marty A, Neher E (1085) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367:117–141CrossRefGoogle Scholar
  51. 51.
    Matsuoka H, Harada K, Nakamura J, Inoue M (2013) Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K+ 1 channels in adrenal medullary cells and PC12 cells. Pflugers Arch 465:1051–1064CrossRefPubMedGoogle Scholar
  52. 52.
    Matsuoka H, Inoue M (2015) Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Am J Physiol Cell Physiol 309:C251–C263CrossRefPubMedGoogle Scholar
  53. 53.
    Medbo JI, Sejersted OM (1990) Plasma potassium changes with high intensity exercise. J Physiol 421:105–122CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Montiel C, Lopez MG, Sanchez-Garcia P, Maroto R, Zapater P, Garcia AG (1995) Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland. J Physiol 486:427–437CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nagayama T, Matsumoto T, Kuwakubo F, Fukushima Y, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S (1999) Role of calcium channels in catecholamine secretion in the rat adrenal gland. J Physiol 520:503–512CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nagayama T, Matsumoto T, Kuwakubo F, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S (1999) Role of cholinergic receptors in adrenal catecholamine secretion in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 277:R1057–R1062CrossRefGoogle Scholar
  57. 57.
    Ohta T, Asano T, Ito S, Kitamura N, Nakazato Y (1996) Characteristics of cytosolic Ca2+ elevation induced by muscarinic receptor activation in single adrenal chromaffin cells of the guinea pig. Cell Calcium 20:303–314CrossRefPubMedGoogle Scholar
  58. 58.
    Olivos L, Artalejo AR (2008) Muscarinic excitation-secretion coupling in chromaffin cells. Acta Physiol (Oxf) 192:213–220CrossRefGoogle Scholar
  59. 59.
    Parker JC, Sarkar D, Quick MW, Lester RAJ (2003) Interactions of atropine with heterologously expressed and native α3 subunit-containing nicotinic acetylcholine receptors. Br J Pharmacol 138:801–810CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptoform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81:384–392CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Role LW, Perlman RL (1983) Both nicotinic and muscarinic receptors mediate catecholamine secretion by isolated guinea-pig chromaffin cells. Neuroscience 10:979–985CrossRefPubMedGoogle Scholar
  62. 62.
    Saito D, Takahashi Y (2015) Sympatho-adrenal morphogenesis regulated by the dorsal aorta. Mech Dev 138:2–7CrossRefPubMedGoogle Scholar
  63. 63.
    Schiekel J, Lindner M, Hetzel A, Wemhoner K, Renigunta V, Schlichthorl G, Decher N, Oliver D, Daut J (2013) The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C. Cardiovasc Res 97:97–105CrossRefPubMedGoogle Scholar
  64. 64.
    Semtner M, Schaefer M, Pinkenburg O, Plant TD (2007) Potentiation of TRPC5 by protons. J Biol Chem 282:33868–33878CrossRefPubMedGoogle Scholar
  65. 65.
    Seo JB, Jung S-R, Huang W, Zhang Q, Koh D-S (2015) Charge shielding of PIP2 by cations regulates enzyme activity of phospholipase C. PLos One 10:ve0144432. doi: 10.1371/journal pone0144432 CrossRefGoogle Scholar
  66. 66.
    Servent D, Fruchart-Gaillard C (2009) Muscarinic toxins:tools for the study of the pharmacological and functional properties of muscarinic receptors. J Neurochem 109:1193–1202CrossRefPubMedGoogle Scholar
  67. 67.
    Shen K-Z, Johnson SW (1997) A slow excitatory postsynaptic current mediated by G-protein-coupled metabotropic glutamate receptors in rat ventral tegmental dopamine neurons. Eur J Neurosci 9:48–54CrossRefPubMedGoogle Scholar
  68. 68.
    Thmpson RJ, Nurse CA (1998) Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J Physiol 512:421–434CrossRefGoogle Scholar
  69. 69.
    Tousova K, Vyklicky L, Susankova K, Benedikt J, Vlachova V (2005) Gadolinium activates and sensitizes the vanilla receptor TRPV1 through the external protonateon sites. Mol Cell Neurosci 30:207–217CrossRefPubMedGoogle Scholar
  70. 70.
    Tsujimoto A, Nishikawa T (1975) Further evidence for nicotinic and muscarinic receptors and their interaction in dog adrenal medulla. Eur J Pharmacol 34:337–344CrossRefPubMedGoogle Scholar
  71. 71.
    Uceda G, Artalejo AR, Lopez MG, Abad F, Neher E, Garcia AG (1992) Ca2+-activated K+ channels modulate muscarinic secretion in cat chromaffin cells. J Physiol 454:213–230CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wakade AR, Wakade TD (1983) Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10:973–978CrossRefPubMedGoogle Scholar
  73. 73.
    Wang C, Du X-N, Jia Q-Z, Zhang H-L (2005) Binding of PLCδ1PH-GFP to PtdIns(4,5)P2 prevenents inhibition of phosphoripase C-mediated hydrolysis of PtdIns(4,5)P2 by neomycin. Acta Pharmacol Sin 26:1485–1491CrossRefPubMedGoogle Scholar
  74. 74.
    Wallace DJ, Chen C, Marley PD (2002) Histamine promotes excitability in bovine adrenal chromaffin cells by inhibiting an M-current. J Physiol 540:921–939CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Warashina A, Inoue M (2012) Ca2+ imaging in perfused adrenal medullae. J UOEH 34:163–173CrossRefPubMedGoogle Scholar
  76. 76.
    Warashina A, Satoh Y (2001) Modes of secretagogue-induced [Ca2+]i responses in individual chromaffin cells of the perfused rat adrenal medulla. Cell Calcium 30:395–401CrossRefPubMedGoogle Scholar
  77. 77.
    Wilke BU, Lindner M, Greifenberg L, Albust A, Kronius Y, Bunemann M, Leitner MG, Olier D (2014) Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Comm 5:5540. doi: 10.1038/ncomms6540 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Cell and Systems PhysiologyUniversity of Occupational and Environmental Health School of MedicineKitakyushuJapan
  2. 2.Department of Life Sciences and Institute of Genome SciencesNational Yang-Ming UniversityTaipeiRepublic of China

Personalised recommendations