Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 470, Issue 1, pp 143–154 | Cite as

Chromogranins: from discovery to current times

  • Karen B. HelleEmail author
  • Marie-Helene Metz-Boutigue
  • Maria Carmela Cerra
  • Tommaso Angelone
Invited Review

Abstract

The discovery in 1953 of the chromaffin granules as co-storage of catecholamines and ATP was soon followed by identification of a range of uniquely acidic proteins making up the isotonic vesicular storage complex within elements of the diffuse sympathoadrenal system. In the mid-1960s, the enzymatically inactive, major core protein, chromogranin A was shown to be exocytotically discharged from the stimulated adrenal gland in parallel with the co-stored catecholamines and ATP. A prohormone concept was introduced when one of the main storage proteins collectively named granins was identified as the insulin release inhibitory polypeptide pancreastatin. A wide range of granin-derived biologically active peptides have subsequently been identified. Both chromogranin A and chromogranin B give rise to antimicrobial peptides of relevance for combat of pathogens. While two of the chromogranin A-derived peptides, vasostatin-I and pancreastatin, are involved in modulation of calcium and glucose homeostasis, respectively, vasostatin-I and catestatin are important modulators of endothelial permeability, angiogenesis, myocardial contractility, and innate immunity. A physiological role is now evident for the full-length chromogranin A and vasostatin-I as circulating stabilizers of endothelial integrity and in protection against myocardial injury. The high circulating levels of chromogranin A and its fragments in patients suffering from various inflammatory diseases have emerged as challenges for future research and clinical applications.

Keywords

Chromogranin A Chromogranin B Vasostatin-I Catestatin Physiological roles Inflammatory diseases 

Abbreviations

AMPs

Antimicrobial peptides

CA

Cateholamines

CgA

Chromogranin A

CgB

Chromogranin B

VS-I

Vasostatin-I

VS-II

Vasostatin-II

Chr

Chromofungin

Chrom

Chromacin

PST

Pancreastatin

CST

Catestatin

Srp

Serpinin

VIF

Vasoconstriction-inhibiting factor

PTH

Parathyroid hormone

SCL

Secretolytin

MIC

Minimal inhibitory concentration

Notes

Acknowledgements

The authors are greatly indebted to Dr. Dominique Aunis for his everlasting and strong scientific support in the development of the biological roles of the chromogranin-derived peptides, in vascular integrity, myocardial contractility, and innate immunity.

References

  1. 1.
    Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41:9–18PubMedCrossRefGoogle Scholar
  2. 2.
    Aardal S, Helle KB, Elsayed S, Reed RK, Serck-Hanssen G (1993) Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol 5:405–412PubMedCrossRefGoogle Scholar
  3. 3.
    Abi-Gerges N, Fischmeister R, Méry PF (2001) G protein-mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ current in rat ven- tricular myocytes. J Physiol 531:117–130PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC (2008) The antihypertensive chromogranin A peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinol 149:4780–4793CrossRefGoogle Scholar
  5. 5.
    Angelone T, Mazza R, Cerra MC (2012) Chromogranin A: a multifaceted cardiovascular role in health and disease. Curr Med Chem 19:4042–4050PubMedCrossRefGoogle Scholar
  6. 6.
    Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F, Rocca C, Mahata SK, Gattuso A, Cerra MC (2015) The NO stimulator, Catestatin, improves the frank-Starling response in normotensive and hypertensive rat hearts. Nitric Oxide 50:10–19PubMedCrossRefGoogle Scholar
  7. 7.
    Angeletti RH, Mints L, Aber C, Russell J (1996) Determination of residues in chromogranin A (16-40) required for inhibition of parathyroid hormone secretion. Endocrinol 137:2918–2922CrossRefGoogle Scholar
  8. 8.
    Angeletti RH, D’Amico T, Russel J (2000) Regulation of parathyroid secretion. Chromogranins, chemokines, and calcium. Adv Exp Med Biol 482:217–223PubMedCrossRefGoogle Scholar
  9. 9.
    Aslam R, Atindehou M, Lavaux T, Haikel Y, Schneider F, Metz-Boutigue MH (2012) Chromogranin A-derived peptides are involved in innate immunity. Curr Med Chem 19:4115–4123PubMedCrossRefGoogle Scholar
  10. 10.
    Banks P, Helle KB (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97:40C–41CPubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bassino E, Fornero S, Gallo MP, Ramella R, Mahata SK, Tota B, Levi R, Alloatti G (2011) A novel catestatin-induced antiadrenergic mechanism triggered by the endothelial PI3K eNOS pathway in the myocardium. Cardiovasc Res 91:617–624PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Belloni D, Scabini S, Foglieni C, Veschini L, Giazzon A, Colombo B, Fulgenzi A, Helle KB, Ferrero ME, Corti A, Ferrero E (2007) The vasostatin-I fragment of chromogranin A inhibits VEGF-induced endothelial proliferation and migration. FASEB J 21:3052–3062PubMedCrossRefGoogle Scholar
  13. 13.
    Blaschko H, Welsch AD (1953) Localization of adrenaline in cytoplasmic particles of the bovine adrenal medulla. Naunyn Schmiedebergs Arch Exp Path Pharmak 219:17–22Google Scholar
  14. 14.
    Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature (Lond) 215:58–59CrossRefGoogle Scholar
  15. 15.
    Blois A, Holmsen H, Martino G, Corti A, Metz-Boutigue MH, Helle KB (2006a) Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phopsphatildylethananolamine. Regul Pept 134:30–37PubMedCrossRefGoogle Scholar
  16. 16.
    Blois A, Srebro B, Mandalà M, Corti A, Helle KB, Serck-Hanssen G (2006b) The chromogranin A peptide vasostatin-I inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells. Regul Pept 135:78–84PubMedCrossRefGoogle Scholar
  17. 17.
    Borges R, Travis ER, Hochstetler SE, Wightman RM (1997) Effects of external osmotic pressure on vesicular secretion from bovine adrenal medullary cells. J Biol Chem 272:8325–8331PubMedCrossRefGoogle Scholar
  18. 18.
    Brekke JF, Osol GJ, Helle KB (2002) N-terminal chromogranin derived peptides as dilators of bovine coronary resistance arteries in vitro. Regul Pept 105:93–100PubMedCrossRefGoogle Scholar
  19. 19.
    Briolat J, Wu SD, Mahata SK, Gonthier B, Bagnard D, Chasserot-Golaz S, Helle KB, Aunis D, Metz-Boutigue MH (2005) New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci 62:377–385PubMedCrossRefGoogle Scholar
  20. 20.
    Cado G, Aslam R, Seon L, Garnier T, Fabre R, Parat A, Chassepot A, Voegel JC, Senger B, Schneider F, Frere Y, Jierry L, Schaaf P, Kerdjoudj H, Metz-Boutigue MH (2013) Self-defensive biomaterial coating against bacteria and yeasts: polysaccharide multilayer film with embedded antimicrobial peptide. Adv Funct Meter 23:4801–4809Google Scholar
  21. 21.
    Cappello S, Angelone T, Tota B, Pagliaro P, Penna C, Rastaldo R, Corti A, Losano G, Cerra MC (2007) Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. Am J Physiol Heart Circul Physiol 293:H719–H727CrossRefGoogle Scholar
  22. 22.
    Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101:43–52PubMedCrossRefGoogle Scholar
  23. 23.
    Cerra MC, Gallo MP, Angelone T, Quintieri AM, Pulerà E, Filice E et al (2008) The homologous rat chromogranin A1-64 (rCGA1-64) modulates myocardial and coronary function in rat heart to counteract adrenergic stimulation indirectly via endothelium-derived nitric oxide. FASEB J 11:3992–4004CrossRefGoogle Scholar
  24. 24.
    Cohn DV, Morrisey JJ, Hamilton JW, Shofstall RE, Smardo FL, Chu LLH (1981) Isolation and partial characterization of secretory protein I from bovine parathyroid glands. Biochemistry 20:4135–4140PubMedCrossRefGoogle Scholar
  25. 25.
    Cohn DV, Zangerle R, Fischer-Colbrie R, Chu LL, Elting JJ, Hamilton JW, Winkler H (1982) Proc Nat Acad Sci USA 79:6056–6059PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Corti A, Ferrari R, Ceconi C (2000) Chromogranin A and tumor necrosis factor-α (TNF) in chronic heart failure. Adv Exp Med Biol 482:351–359PubMedCrossRefGoogle Scholar
  27. 27.
    Crippa L, Bianco M, Colombo B, Gasparri AM, Ferrero E, Loh YP, Curnis F, Corti A (2013) A new chromogranin A-dependent angiogenic switch activated by thrombin. Blood 121:392–402PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Diaz-Vera J, Camacho M, Machado JD, Dominguez N, Montesinos MS, Hernández-Fernaud JR, Luján R, Borges R (2012) Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is concerved without them. FASEB J 26:430–438PubMedCrossRefGoogle Scholar
  29. 29.
    Egger M, Beer AG, Theurl M, Schgoer W, Hotter B, Tatarczyk T (2008) Monocyte migration: a novel effect and signaling pathways of catestatin. Eur J Pharmacol 598:104–111PubMedCrossRefGoogle Scholar
  30. 30.
    Eiden L (1987) Is chromogranin A a prohormone? Nature 325:301PubMedCrossRefGoogle Scholar
  31. 31.
    El-Salhy M, Danielsson A, Stenling R, Grimelius L (1997) Colonic endocrine cells in inflammatory bowel disease. J Intern Med 242:413–419PubMedCrossRefGoogle Scholar
  32. 32.
    Etienne O, Gasnier C, Taddei C, Voegel JC, Aunis D, Schaaf P, Metz-Boutigue MH, Bolcato-Bellemin AL, Egles C (2005) Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials 26:6704–6712PubMedCrossRefGoogle Scholar
  33. 33.
    Fasciotto BH, Gorr S-U, Bourdeau AM, Cohn DV (1990) Autocrine regulation of patathyroid secretion: inhibition of secretion by chromogranin A (secretory protein-I) and potentiation of secretion by chromogranin A and pancreastatin antibodies. Endocrinol 133:461–466CrossRefGoogle Scholar
  34. 34.
    Ferrero E, Scabini S, Magni E, Foglieni C, Belloni D, Colombo B, Curnis F, Villa A, Ferrero ME, Corti A (2004) Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. FASEB J 18:554–555PubMedGoogle Scholar
  35. 35.
    Filice E, Pasqua T, Quintieri AM, Cantafio P, Scavello F, Amodio N, Cerra MC, Marban C, Schneider F, Metz-Boutigue M-H, Angelone T (2015) Chromofungin, CgA 47-66 –derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides 71:40–48PubMedCrossRefGoogle Scholar
  36. 36.
    Fournier I, Gaucher D, Chich JF, Bach C, Shooshtarizadeh P, Picaud S, Bourcier T, Speeg-Schatz C, Strub JM, Van Dorsselaer A, Corti A, Aunis D, Metz-Boutigue MH (2011) Processing of chromogranins/secretogranin in patients with diabetic retinopathy. Regul Pept 167:118–124PubMedCrossRefGoogle Scholar
  37. 37.
    Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B, Rao F, Stridsberg M, Ziegler MG, Mahata SK, O'Connor DT (2010) Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 32:278–287PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Helle KB (1966a) Some chemical and physical properties of the soluble protein fraction of bovine adrenal cgromaffin granules. Mol Pharmacol 2:298–310PubMedGoogle Scholar
  39. 39.
    Helle K (1966b) Antibody formation against soluble protein from bovine adrenal chromaffin granules. Biochim Biophys Acta 117:107–110PubMedCrossRefGoogle Scholar
  40. 40.
    Helle KB (2010a) Regulatory peptides from chromogranin A and secretogranin II. Putative modulators of cells and tissues involved in inflammatory conditions. Regul Pept 165:45–51PubMedCrossRefGoogle Scholar
  41. 41.
    Helle KB (2010b) The chromogranin A-derived peptides vasostatin. I and catestatin as regulatory peptides for cardiovascular functions. Cardiovasc Res 85:9–16PubMedCrossRefGoogle Scholar
  42. 42.
    Helle KB, Angeletti RH (1994) Chromogranin A: a multipurpose prohormone? Acta Physiol Scand 152:1–10PubMedCrossRefGoogle Scholar
  43. 43.
    Helle KB, Aunis D (eds) (2000) Chromogranins. Functional and Clinical Aspects Adv Exp Med Biol 482:1–405Google Scholar
  44. 44.
    Helle KB, Corti A (2015) Chromogranin A: a paradoxical player in angiogenesis and vascular biology. Cell Mol Life Sci 72:339–348PubMedCrossRefGoogle Scholar
  45. 45.
    Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886PubMedCrossRefGoogle Scholar
  46. 46.
    Helle KB, Reed RK, Pihl KE, Serck-Hanssen G (1985) Osmotic properties of the chromogranins and relation to pressure in catecholamine storage granules. Acta Physiol Scand 123:21–33PubMedCrossRefGoogle Scholar
  47. 47.
    Henriques ST, Melo MN, Castanho MA (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 399:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hillarp N-Å, Lagerstedt S, Nilson B (1953) The isolation of a granular fraction from the suprarenal medulla, containing the sympathomimetic catecholamines. Acta Physiol Scand 29:251–263PubMedCrossRefGoogle Scholar
  49. 49.
    Hillarp N-Å (1959) Further observations on the state of the catecholamines stored in the adrenal medullary granules. Acta Physiol Scand 47:271–279PubMedCrossRefGoogle Scholar
  50. 50.
    Hsiao RJ, Seerger RC, Yu AL, O’Connor DT (1990) Chromogranin A in children with neuroblastoma: plasma concentration parallels disease stage and predicts survival. J Clin Invest 85:1555–1559PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Huh YH, Bahk SJ, Ghee JY, Yoo SH (2005) Subcellular distribution of chromogranins A and B in bovine adrenal chromaffin cells. FEBS Lett 579:5145–5151PubMedCrossRefGoogle Scholar
  52. 52.
    Huttner WB, Benedum UM (1987) Chromogranin A and pancreastatin. Nature 325:305PubMedCrossRefGoogle Scholar
  53. 53.
    Huttner WB, Gerdes HH, Rosa P (1991) The granin (chromogranin/secretogranin) family. Trends Biochem Sci 16:27–30PubMedCrossRefGoogle Scholar
  54. 54.
    Kim T, Loh YP (2006) Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation. Mol Biol Cell 2:789–798Google Scholar
  55. 55.
    Koshimizu H, Kim T, Cawley NX, Loh YP (2010) Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. Regul Pept 160:153–159PubMedCrossRefGoogle Scholar
  56. 56.
    Koshimizu H, Cawley NX, Yergey AL, Loh YP (2011b) Role of pGlu-serpinin; a novel chromogranin A-derived peptide in inhibition of cell death. J Mol Neurosci 45:294–303PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Krüger P-G, Mahata SK, Helle KB (2003) Catestatin (CgA344-364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul Pept 114:29–35PubMedCrossRefGoogle Scholar
  58. 58.
    Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, Aunis D, Metz-Boutigue M-H (2000) Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem 275:10745–10753PubMedCrossRefGoogle Scholar
  59. 59.
    Lugardon K, Chasserot-Golaz S, Kiefler AE, Maget-Dana R, Nullans G, Kiefler B, Aunis D, Metz-Boutigue M-H (2001) Structural and biochemical characterization of chromofungin, the antifungal chromogranin A-(47-68)-derived peptide. J Biol Chem 276:35875–35882PubMedCrossRefGoogle Scholar
  60. 60.
    Maget-Dana R, Lelièvre D, Brack A (1999) Surface active properties of amphiphilic sequential isopeptides: comparison between alpha-helical and beta-sheet conformations. Biopolymers 49:415–423PubMedCrossRefGoogle Scholar
  61. 61.
    Maget-Dana R, Metz-Boutigue MH, Helle KB (2002) The N-terminal domain of chromogranin A (CgA1–40) interacts with monolayers of membrane lipids of fungal and mammalian compositions. Ann N Y Acad Sci 971:352–354PubMedCrossRefGoogle Scholar
  62. 62.
    Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100:1623–1633PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mahata SK, Mahata M, Fung M, O’Connor DT (2010) Catestatin: a multifunctional peptide from chromogranin A. Regul Pept 162:33–43PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Rosa J, Mahata SK (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mandalà M, Brekke JF, Serck-Hanssen G, Metz-Boutigue MH, Helle KB (2005) Chromogranin A-derived peptides: interaction with rat posterior cerebral artery. Regul Pept 124:73–80PubMedCrossRefGoogle Scholar
  66. 66.
    Mandalà M, Stridsberg M, Helle KB, Serck-Hanssen G (2000) Endothelial handeling of chromogranin A. Adv Exp Med Biol 482:167–178PubMedCrossRefGoogle Scholar
  67. 67.
    Maniatis NA, Brovkovych V, Allen SE, John TA, Shajahan AN, Tiruppathi C et al (2006) Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells. Circ Res 8:870–877CrossRefGoogle Scholar
  68. 68.
    Matsuda N, Jesmin S, Takahashi Y, Hatta E, Kobayashi M, Matsuyama K, Kawakami N, Sakuma I, Gando S, Fukui H, Hattori Y, Levi R (2004) Histamine H1 and H2 receptor gene and protein levels are differentially expressed in the hearts of rodents and humans. J Pharmacol Exp Ther 309:786–795PubMedCrossRefGoogle Scholar
  69. 69.
    Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A: determination of cleavage sites. Europ J Biochem 217:247–257PubMedCrossRefGoogle Scholar
  70. 70.
    Metz-Boutigue MH, Kieffer AE, Goumon Y, Aunis D (2003) Innate immunity: involvement of new neuropeptides. Trends Microbiol 11:585–592PubMedCrossRefGoogle Scholar
  71. 71.
    Mizuhashi F, Koide K, Toya S, Takahashi M, Mizuhashi R, Shimomura H (2015) Levels of the antimicrobial proteins lactoferrin and chromogranin in the saliva of individuals with oral dryness. J Prosthet Dent 113:35–38PubMedCrossRefGoogle Scholar
  72. 72.
    O’Connor DT, Bernstein KN (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311:764–770PubMedCrossRefGoogle Scholar
  73. 73.
    O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20:1335–1345PubMedCrossRefGoogle Scholar
  74. 74.
    Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS (2008) S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 31:395–405PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Özcelik H, Vrana NE, Gudima A, Riabov V, Gratchev A, Haikel Y, Metz-Boutigue MH, Carrado A, Färber J, Roland T, Klüter H, Kzhyshkowska J, Schaaf P, Lavalle P (2015) Harnessing the multifunctionality in nature: a bioactive agent release system with self-antimicrobial and immunomodulatory properties. Adv Healthc Mater 4:2026–2036PubMedCrossRefGoogle Scholar
  76. 76.
    Pasqua T, Corti A, Gentile S, Pochini L, Bianco M, Metz-Boutigue MH, Cerra MC, Tota B, Angelone T (2013) Full-length human chromogranin-A cardioactivity: myocardial, coronary and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinol 154:3353–3365CrossRefGoogle Scholar
  77. 77.
    Pasqua T, Tota B, Penna C, Corti A, Cerra MC, Loh YP, Angelone T (2015) pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury. J Endocrinol 227:167–178PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Penna C, Alloatti G, Gallo MP, Cerra MC, Levi R, Tullio F, Bassino E, Dolgetta S, Mahata SK, Tota B (2010) Catestatin improves post-ischemic left ventricular function and decreases ischemia/reperfusion injury in heart. Cell Mol Neurobiol 30:1171–1179PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Penna C, Pasqua T, Amelio D, Perrelli M-G, Angotti C, Tullio F, Mahata SK, Tota B, Pagliaro P, Cerra MC, Angelone T (2014) Catestatin increases the expression of anti-apoptotic and proangiogenetic factors in the post-ischemic hypertrophied heart of SHR. PLoS One 9(e102536):1–11Google Scholar
  80. 80.
    Penna C, Tulio F, Perrelli MG, Mancadi D, Pagliaro P (2012) Cardioprotection against ischemia/reperfusion injury and chromogranin A-derived peptides. Clin Med Chem 19:4074–4085Google Scholar
  81. 81.
    Perrelli MG, Tullio F, Angotti C, Cerra MC, Angelone T, Tota B, Alloatti G, Penna C, Pagliaro P (2013) Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling. Pflügers Arch 465:1031–1040PubMedCrossRefGoogle Scholar
  82. 82.
    Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 28:1117–1127PubMedCrossRefGoogle Scholar
  83. 83.
    Rabbi MF, Labis B, Metz-Boutigue MH, Bernstein CN, Ghia JE (2014) Catestatin decreases macrophage function in two mouse models of experimental colitis. Biochem Pharmacol 89:386–398PubMedCrossRefGoogle Scholar
  84. 84.
    Radek KA, Lopez-Garcia B, Hupe M, Niesman IR, Elias PM, Taupenot L, Mahata SK, O’Connor DT, Gallo RL (2008) The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol 128:1525–1534PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Reinisch N, Kirchmair R, Kähler CM, Hogue-Angeletti R, Fischer-Colbrie R, Winkler H (1993) Attraction of human monocytes by the neuropeptide secretoneurin. FEBS Lett 334:41–44PubMedCrossRefGoogle Scholar
  86. 86.
    Roatta S, Passatore M, Novello M, Colombo B, Dondossola E, Mohammed M, Losano G, Corti A, Helle KB (2011) The chromogranin A-derived peptide vasostatin-I: in vivo effects on cardiovascular variables in the rabbit. Regul Pept 168:10–20PubMedCrossRefGoogle Scholar
  87. 87.
    Salem S, Jankowski V, Asare Y, Liehn E, Welker P, Raya-Bermudez A, Pineda-Martos C, Rodrigues M, Muñoz-Castrañeda JR, Bruck H, Marx N, Machado FB, Straudt M, Heinze G, Zidek W, Jankowski J (2015) Identification of the vasoconstriction-inhibiting factor (VIF), a potent endogenous cofactor of angiotensin II acting on the angiotensin II type receptor. Circulation 131:1426–1434PubMedCrossRefGoogle Scholar
  88. 88.
    Samuels MA (2007) The brain-heart connection. Circulation 1:77–84CrossRefGoogle Scholar
  89. 89.
    Sanchez-Margalet V, Gonzalez-Yanes C (1998) Pancreastatin inhibits insulin action in rat adipocytes. Am J Phys 275:E1055–E1060Google Scholar
  90. 90.
    Sanchez-Margalet V, Gonzalez-Yanes C, Najib S (2001) Pancreastatin, a chromogranin A-derived peptide, inhibits DNA and protein synthesis by producing nitric oxide in HTC rat hepatoma cells. J Hepatol 35:80–85PubMedCrossRefGoogle Scholar
  91. 91.
    Schneider F, Bach C, Chung H, Crippa L, Lavaux T, Bollaert PE, Wolff M, Corti A, Launoy A, Delabranche X et al (2012) Vasostatin-I, a chromogranin A-derived peptide, in non-selected critically ill patients: distribution, kinetics, and prognostic significance. Intensive Care Med 38:1514–1522PubMedCrossRefGoogle Scholar
  92. 92.
    Shooshtarizadeh P, Zhang D, Chich JF, Gasnier C, Schneider F, Haikel Y, Aunis D, Metz-Boutigue MH (2010) The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. Regul Pept 165:102–110PubMedCrossRefGoogle Scholar
  93. 93.
    Smith AD, Winkler H (1967) Purification and properties of an acidic protein from chromaffin granules of bovine adrenal medulla. Biochem J 103:483–492PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Smith WJ, Kirshner A (1967) A specific soluble protein from the catecholamine storage vesicles of bovine adrenal medulla. Mol Pharmacol 3:52–62PubMedGoogle Scholar
  95. 95.
    Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Strub JM, Garcia-Sablone P, Lønning K, Taupenot L, Hubert P, van Dorsselar A, Aunis D, Metz. Boutigue MH (1995) Processing of chromogranin B in bovine adrenal medulla; identification of secretolytin, the endotenous C-terminal fragment of residues 614-626 with antibacterial activity. Eur J Biochem 229:356–368PubMedCrossRefGoogle Scholar
  97. 97.
    Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M (1996a) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540PubMedCrossRefGoogle Scholar
  98. 98.
    Strub JM, Hubert P, Nullans G, Aunis D, Metz-Boutigue MH (1996b) Antibacterial activity of secretolytin, a chromogranin B-derived peptide (614–626), is correlated with peptide structure. FEBS Lett 379:273–278PubMedCrossRefGoogle Scholar
  99. 99.
    Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478PubMedCrossRefGoogle Scholar
  100. 100.
    Theurl M, Schgoer W, Albrecht K, Jeschke J, Egger M, Beer AG, Vasiljevic D, Rong S, Wolf AM, Bahlmann FH et al (2010) The neuropeptide catestatin acts as a novel angiogenic cytokine via a basic fibroblast growth factor-dependent mechanism. Circ Res 107:1326–1335PubMedCrossRefGoogle Scholar
  101. 101.
    Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron MG (2003) Oligomerization and trafficking of the human dopamine transporter. J Biol Chem 278:2731–2739PubMedCrossRefGoogle Scholar
  102. 102.
    Tota B, Cerra MC, Gattuso A (2010) Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a “whip-brake” system of the endocrine heart. J Exp Biol 18:3081–3103CrossRefGoogle Scholar
  103. 103.
    Tota B, Gentile S, Pasqua T, Bassino E, Koshimizu H, Cawley NX, Cerra MC, Loh YP, Angelone T (2012) The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac beta-adrenergic-like inotropes. FASEB J 26:2888–2898PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Troger J, Theurl M, Kirkmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB (2017) Granin-derived peptides. Prog Neurobiol 154:37–61PubMedCrossRefGoogle Scholar
  105. 105.
    Valicherla GR, Hossain Z, Mahata SK, Gayen JR (2013) Pancreastatin is an endogenous peptide that regulates glucose homeostasis. Physiol Genomics 45:1060–1071PubMedCrossRefGoogle Scholar
  106. 106.
    Valore EV, Ganz T (1992) Posttranslational processing of defensins in immature human myeloid cells. Blood 79:1538–1544PubMedGoogle Scholar
  107. 107.
    Vulpian M (1856) Note sur quelque reactions proper a la substances des capsules surrénales. C R Acad Sci (Paris) 43:663Google Scholar
  108. 108.
    Watson T, Goon PK, Lip GY (2008) Endothelial progenitor cells, endothelial dysfunction, inflammation and oxidative stress in hypertension. Antioxid Redox Signal 10:1079–1088PubMedCrossRefGoogle Scholar
  109. 109.
    Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang D, Shooshtarizadeh P, Laventie B-J, Colin DA, Chich J-F, Vidic J, de Barry J, Chasserot-Golaz S, Delalande F, van Dorsselaer A, Schneider F, Helle K, Aunis D, Prevost G, Metz-Boutigue M-H (2009) Two chromogranin A-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One 4:e4501 pp 1–14PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Karen B. Helle
    • 1
    Email author
  • Marie-Helene Metz-Boutigue
    • 2
  • Maria Carmela Cerra
    • 3
  • Tommaso Angelone
    • 3
  1. 1.Department of BiomedicineUniversity of BergenBergenNorway
  2. 2.Biomaterials and Tissue EngineeringInstitut National de la Santé et de la Recherche MedicaleStrasbourgFrance
  3. 3.Department of Biology, Ecology and Earth SciencesUniversity of CalabriaArcavata de RendeItaly

Personalised recommendations