Advertisement

Comparative transcriptomic analysis identifies evolutionarily conserved gene products in the vertebrate renal distal convoluted tubule

  • Yuya Sugano
  • Chiara Cianciolo Cosentino
  • Dominique Loffing-Cueni
  • Stephan C. F. NeuhaussEmail author
  • Johannes LoffingEmail author
Original Article

Abstract

Understanding the molecular basis of the complex regulatory networks controlling renal ion transports is of major physiological and clinical importance. In this study, we aimed to identify evolutionarily conserved critical players in the function of the renal distal convoluted tubule (DCT) by a comparative transcriptomic approach. We generated a transgenic zebrafish line with expression of the red fluorescent mCherry protein under the control of the zebrafish DCT-specific promoter of the thiazide-sensitive NaCl cotransporter (NCC). The mCherry expression was then used to isolate from the zebrafish mesonephric kidneys the distal late (DL) segments, the equivalent of the mammalian DCT, for subsequent RNA-seq analysis. We next compared this zebrafish DL transcriptome to the previously established mouse DCT transcriptome and identified a subset of gene products significantly enriched in both the teleost DL and the mammalian DCT, including SLCs and nuclear transcription factors. Surprisingly, several of the previously described regulators of NCC (e.g., SPAK, KLHL3, ppp1r1a) in the mouse were not found enriched in the zebrafish DL. Nevertheless, the zebrafish DL expressed enriched levels of related homologues. Functional knockdown of one of these genes, ppp1r1b, reduced the phosphorylation of NCC in the zebrafish pronephros, similar to what was seen previously in knockout mice for its homologue, Ppp1r1a. The present work is the first report on global gene expression profiling in a specific nephron portion of the zebrafish kidney, an increasingly used model system for kidney research. Our study suggests that comparative analysis of gene expression between phylogenetically distant species may be an effective approach to identify novel regulators of renal function.

Keywords

Kidney Distal convoluted tubule NaCl cotransporter Zebrafish Comparative transcriptomics 

Notes

Acknowledgements

The authors would like to thank Drs. Jelena Kühn-Georgijevic and Lennart Opitz (Functional Genomics Center Zurich) for their assistance with RNA-Seq and bioinformatics analysis. Valuable bioinformatics support was also provided by Ville Kytölä (Genevia Technologies Ltd). We would also like to thank Kerstin Dannenhauer and Michèle Heidemeyer for their technical support including the excellent care of the zebrafish and the careful execution of the HEK293 cell experiments. This work was supported by the Hartmann Müller Stiftung (to YS), the Forschungskredit from the Faculty of Medicine at the University of Zurich (to YS), the RiMED Foundation (to CCC), the Zurich Center for Integrative Human Physiology (to SN, JL), by project grants (310030_143929/1, 310030_173276) from the Swiss National Science Foundation (to JL) and the Swiss National Center for Competence in Research “Kidney.CH” (to JL).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

424_2017_2009_MOESM1_ESM.xlsx (4.1 mb)
Supplementary Table 1 Raw read count and gene expression table. Gene expressions were quantified from alignment files using htseq-count (version 0.6.0.). Raw counts are reported in this table in columns C–H. R software (version 3.3.1) was used to process the raw counts to FPKM normalized gene expressions. R libraries biomaRt (2.30.0) and GenomicFeatures (1.26.4) were used to annotate Ensembl gene IDs with gene symbols and extract exon lengths for the normalization. FPKM (fragments per kilobase of transcript per million mapped reads) expressions are reported in columns J–O. Library sizes for the FPKM normalization were calculated as a sum of all gene-wise read counts in each sample. Ribosomal RNA-coding genes were removed prior to library size estimation to remove bias caused by rRNA derived reads. (XLSX 4157 kb)
424_2017_2009_MOESM2_ESM.xlsx (3 mb)
Supplementary Table 2 Differential expression between DL segment and whole kidney samples. Differential expression was calculated in R software using library DESeq2 (1.14.1). Table column base Mean describes the average expression across all samples in natural (non-log2) scale. Column “log2FoldChange” shows log2 ratio of expressions between DL segment and whole kidney sample groups with positive values indicating higher expression in DL segment group and vice versa. Remaining columns show error estimates, t test statistics and univariate and multiple testing adjusted p values for t testing difference in group means. (XLSX 3075 kb)
424_2017_2009_MOESM3_ESM.pdf (39 kb)
Supplementary Table 3 (PDF 38 kb)

References

  1. 1.
    Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Valimaki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP (2011) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:98–102CrossRefGoogle Scholar
  2. 2.
    Chabardes-Garonne D, Mejean A, Aude JC, Cheval L, Di Stefano A, Gaillard MC, Imbert-Teboul M, Wittner M, Balian C, Anthouard V, Robert C, Segurens B, Wincker P, Weissenbach J, Doucet A, Elalouf JM (2003) A panoramic view of gene expression in the human kidney. Proc Natl Acad Sci U S A 100:13710–13715CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen D, Coffman TM (2012) The kidney and hypertension: lessons from mouse models. Can J Cardiol 28:305–310CrossRefPubMedGoogle Scholar
  4. 4.
    Cheval L, Pierrat F, Dossat C, Genete M, Imbert-Teboul M, Duong Van Huyen JP, Poulain J, Wincker P, Weissenbach J, Piquemal D, Doucet A (2011) Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells. Physiol Genomics 43:161–173CrossRefPubMedGoogle Scholar
  5. 5.
    Cheval L, Pierrat F, Rajerison R, Piquemal D, Doucet A (2012) Of mice and men: divergence of gene expression patterns in kidney. PLoS One 7:e46876CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, de Caestecker MP, Hukriede NA (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Divekar SD, Tiek DM, Fernandez A, Riggins RB (2016) Estrogen-related receptor beta (ERRbeta)—renaissance receptor or receptor renaissance? Nucl Recept Signal 14:e002PubMedPubMedCentralGoogle Scholar
  8. 8.
    Dong L, Pietsch S, Englert C (2015) Towards an understanding of kidney diseases associated with WT1 mutations. Kidney Int 88:684–690CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Drummond IA, Davidson AJ (2010) Zebrafish kidney development. Methods Cell Biol 100:233–260CrossRefPubMedGoogle Scholar
  10. 10.
    Festuccia N, Dubois A, Vandormael-Pournin S, Gallego Tejeda E, Mouren A, Bessonnard S, Mueller F, Proux C, Cohen-Tannoudji M, Navarro P (2016) Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat Cell Biol 18:1139–1148CrossRefPubMedGoogle Scholar
  11. 11.
    Fryckstedt J, Aperia A, Snyder G, Meister B (1993) Distribution of dopamine- and cAMP-dependent phosphoprotein (DARPP-32) in the developing and mature kidney. Kidney Int 44:495–502CrossRefPubMedGoogle Scholar
  12. 12.
    Glover M, Zuber AM, O'Shaughnessy KM (2011) Hypertension, dietary salt intake, and the role of the thiazide-sensitive sodium chloride transporter NCCT. Cardiovasc Ther 29:68–76CrossRefPubMedGoogle Scholar
  13. 13.
    Hadchouel J, Ellison DH, Gamba G (2016) Regulation of renal electrolyte transport by WNK and SPAK-OSR1 kinases. Annu Rev Physiol 78:367–389CrossRefPubMedGoogle Scholar
  14. 14.
    Kaissling B, Loffing J (1998) Cell growth and cell death in renal distal tubules, associated with diuretic treatment. Nephrol Dial Transplant 13:1341–1343CrossRefPubMedGoogle Scholar
  15. 15.
    Katz AI, Doucet A, Morel F (1979) Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Phys 237:F114–F120Google Scholar
  16. 16.
    Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005) Organization of the pronephric filtration apparatus in zebrafish requires nephrin podocin and the FERM domain protein mosaic eyes. Dev Biol 285:316–329CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Krid H, Dorison A, Salhi A, Cheval L, Crambert G (2012) Expression profile of nuclear receptors along male mouse nephron segments reveals a link between ERRbeta and thick ascending limb function. PLoS One 7:e34223CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099CrossRefPubMedGoogle Scholar
  19. 19.
    Lee JW, Chou CL, Knepper MA (2015) Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J Am Soc Nephrol 26:2669–2677CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, International Consortium for Blood P, Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44:456–460, S451–453CrossRefPubMedGoogle Scholar
  21. 21.
    McCampbell KK, Springer KN, Wingert RA (2015) Atlas of cellular dynamics during zebrafish adult kidney regeneration. Stem Cells Int 2015:547636CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McCormick JA, Ellison DH (2015) Distal convoluted tubule. Compr Physiol 5:45–98PubMedGoogle Scholar
  23. 23.
    Moes AD, van der Lubbe N, Zietse R, Loffing J, Hoorn EJ (2014) The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch 466:107–118CrossRefPubMedGoogle Scholar
  24. 24.
    Moser M, Dahmen S, Kluge R, Grone H, Dahmen J, Kunz D, Schorle H, Buettner R (2003) Terminal renal failure in mice lacking transcription factor AP-2 beta. Lab Investig 83:571–578CrossRefPubMedGoogle Scholar
  25. 25.
    Obara T, Mangos S, Liu Y, Zhao J, Wiessner S, Kramer-Zucker AG, Olale F, Schier AF, Drummond IA (2006) Polycystin-2 immunolocalization and function in zebrafish. J Am Soc Nephrol 17:2706–2718CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Picard N, Trompf K, Yang CL, Miller RL, Carrel M, Loffing-Cueni D, Fenton RA, Ellison DH, Loffing J (2014) Protein phosphatase 1 inhibitor-1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. J Am Soc Nephrol 25:511–522CrossRefPubMedGoogle Scholar
  27. 27.
    Pradervand S, Zuber Mercier A, Centeno G, Bonny O, Firsov D (2010) A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch 460:925–952CrossRefPubMedGoogle Scholar
  28. 28.
    Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA (2014) Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol Renal Physiol 306:F1059–F1068CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Richardson C, Alessi DR (2008) The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. J Cell Sci 121:3293–3304CrossRefPubMedGoogle Scholar
  30. 30.
    Robra L, Thirumalai V (2016) The intracellular signaling molecule Darpp-32 is a marker for principal neurons in the cerebellum and cerebellum-like circuits of zebrafish. Front Neuroanat 10:81CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122:2337–2343CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sohara E, Uchida S (2016) Kelch-like 3/Cullin 3 ubiquitin ligase complex and WNK signaling in salt-sensitive hypertension and electrolyte disorder. Nephrol Dial Transplant 31:1417–1424CrossRefPubMedGoogle Scholar
  33. 33.
    Sugano Y, Lindenmeyer MT, Auberger I, Ziegler U, Segerer S, Cohen CD, Neuhauss SC, Loffing J (2015) The Rho-GTPase binding protein IQGAP2 is required for the glomerular filtration barrier. Kidney Int 88:1047–1056CrossRefPubMedGoogle Scholar
  34. 34.
    Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, Siler DA, Park HJ, Fu Y, Cohen DM, Weinstein AM, Wang WH, Yang CL, Ellison DH (2015) Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21:39–50CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Thebault S, Hoenderop JG, Bindels RJ (2006) Epithelial Ca2+ and Mg2+ channels in kidney disease. Adv Chronic Kidney Dis 13:110–117CrossRefPubMedGoogle Scholar
  36. 36.
    Thisse B, Thisse C. (2004) Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission http://zfin.org/
  37. 37.
    Westerfield M. (1993) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). M. Westerfield: Eugene, OR.Google Scholar
  38. 38.
    Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yuya Sugano
    • 1
    • 2
  • Chiara Cianciolo Cosentino
    • 1
    • 2
  • Dominique Loffing-Cueni
    • 1
  • Stephan C. F. Neuhauss
    • 2
    Email author
  • Johannes Loffing
    • 1
    • 3
    Email author
  1. 1.Institute of AnatomyUniversity of ZurichZurichSwitzerland
  2. 2.Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
  3. 3.Swiss National Center of Competence in Research “Kidney.CH”ZurichSwitzerland

Personalised recommendations