Advertisement

Tight junctions of the proximal tubule and their channel proteins

  • Michael Fromm
  • Jörg Piontek
  • Rita Rosenthal
  • Dorothee Günzel
  • Susanne M. Krug
Invited Review

Abstract

The renal proximal tubule achieves the majority of renal water and solute reabsorption with the help of paracellular channels which lead through the tight junction. The proteins forming such channels in the proximal tubule are claudin-2, claudin-10a, and possibly claudin-17. Claudin-2 forms paracellular channels selective for small cations like Na+ and K+. Independently of each other, claudin-10a and claudin-17 form anion-selective channels. The claudins form the paracellular “pore pathway” and are integrated, together with purely sealing claudins and other tight junction proteins, in the belt of tight junction strands surrounding the tubular epithelial cells. In most species, the proximal tubular tight junction consists of only 1–2 (pars convoluta) to 3–5 (pars recta) horizontal strands. Even so, they seal the tubule very effectively against leak passage of nutrients and larger molecules. Remarkably, claudin-2 channels are also permeable to water so that 20–25% of proximal water absorption may occur paracellularly. Although the exact structure of the claudin-2 channel is still unknown, it is clear that Na+ and water share the same pore. Already solved claudin crystal structures reveal a characteristic β-sheet, comprising β-strands from both extracellular loops, which is anchored to a left-handed four-transmembrane helix bundle. This allowed homology modeling of channel-forming claudins present in the proximal tubule. The surface of cation- and anion-selective claudins differ in electrostatic potentials in the area of the proposed ion channel, resulting in the opposite charge selectivity of these claudins. Presently, while models of the molecular structure of the claudin-based oligomeric channels have been proposed, its full understanding has only started.

Keywords

Kidney Claudins Paracellular ion transport Paracellular water transport Freeze-fracture electron microscopy Molecular channel structure 

Notes

Acknowledgements

The authors’ work is supported by grants of the Deutsche Forschungsgemeinschaft DFG FR 652/12-1, DFG PI 837/4-1, and DFG GU 447/14-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M (2006) Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Ren Physiol 291:F1132–F1141CrossRefGoogle Scholar
  2. 2.
    Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Phys 265:F463–F476Google Scholar
  3. 3.
    Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson JM, Van Itallie CM, Fanning AS (2004) Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16:140–145CrossRefPubMedGoogle Scholar
  5. 5.
    Angelow S, Yu AS (2009) Structure-function studies of claudin extracellular domains by cysteine-scanning mutagenesis. J Biol Chem 284:29205–29217CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aronson PS, Giebisch G (1997) Mechanisms of chloride transport in the proximal tubule. Am J Phys 273:F179–F192Google Scholar
  7. 7.
    Barratt LJ, Rector FC Jr, Kokko JP, Seldin DW (1974) Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J Clin Invest 53:454–464CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boulpaep EL (1971) Electrophysiological properties of the proximal tubule: importance of cellular and intercellular transport pathways. In: Giebisch G (ed) Electrophysiology of epithelial cells. Schattauer Verlag, Stuttgart, pp 98–112Google Scholar
  9. 9.
    Brandner JM, McIntyre M, Kief S, Wladykowski E, Moll I (2003) Expression and localization of tight junction-associated proteins in human hair follicles. Arch Dermatol Res 295:211–221CrossRefPubMedGoogle Scholar
  10. 10.
    Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehlin LA, Steere RL, Weinstein RS (1975) Freeze-etching nomenclature. Science (New York, NY) 190:54–56Google Scholar
  11. 11.
    Cheval L, Pierrat F, Dossat C, Genete M, Imbert-Teboul M, Duong Van Huyen J-P, Poulain J, Wincker P, Weissenbach J, Piquemal D, Doucet A (2011) Atlas of gene expression in the mouse kidney: new features of glomerular parietal cells. Physiol Genomics 43:161–173CrossRefPubMedGoogle Scholar
  12. 12.
    Claude P (1978) Morphological factors influencing transepithelial permeability: a model for the resistance of the Zonula Occludens. J Membr Biol 39:219–232CrossRefPubMedGoogle Scholar
  13. 13.
    Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Conrad MP, Piontek J, Günzel D, Fromm M, Krug SM (2016) Molecular basis of claudin-17 anion selectivity. Cell Mol Life Sci 73:185–200CrossRefPubMedGoogle Scholar
  15. 15.
    Diamond JM (1978) Channels in epithelial cell membranes and junctions. Fed Proc 37:2639–2643PubMedGoogle Scholar
  16. 16.
    Diamond JM (1974) Tight and leaky junctions of epithelia: a perspective on kisses in the dark. Fed Proc 33:2220–2224PubMedGoogle Scholar
  17. 17.
    Duarte CG, Watson JF (1967) Calcium reabsorption in proximal tubule of the dog nephron. Am J Phys 212:1355–1360Google Scholar
  18. 18.
    Eichner M, Protze J, Piontek A, Krause G, Piontek J (2017) Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflügers Arch Eur J Physiol 469:77–90Google Scholar
  19. 19.
    Elkouby-Naor L, Abassi Z, Lagziel A, Gow A, Ben-Yosef T (2008) Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res 333:427–438CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Enck AH, Berger UV, Yu AS (2001) Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am J Physiol Ren Physiol 281:966–974CrossRefGoogle Scholar
  21. 21.
    Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    France MM, Turner JR (2017) The mucosal barrier at a glance. J Cell Sci 130:307–314CrossRefPubMedGoogle Scholar
  23. 23.
    Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19:1912–1921Google Scholar
  24. 24.
    Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788CrossRefPubMedGoogle Scholar
  27. 27.
    Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gong Y, Renigunta V, Zhou Y, Sunq A, Wang J, Yang J, Renigunta A, Baker LA, Hou J (2015) Biochemical and biophysical analyses of tight junction permeability made of claudin-16 and claudin-19 dimerization. Mol Biol Cell 26:4333–4346CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Günzel D, Fromm M (2012) Claudins and other tight junction proteins. Compr Physiol 2:1819–1852PubMedGoogle Scholar
  30. 30.
    Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M, Müller D (2009) Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 122:1507–1517CrossRefPubMedGoogle Scholar
  31. 31.
    Günzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guo P, Weinstein AM, Weinbaum S (2003) A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Am J Physiol Ren Physiol 285:F241–F257CrossRefGoogle Scholar
  33. 33.
    Haddad M, Lin F, Dwarakanath V, Cordes K, Baum M (2005) Developmental changes in proximal tubule tight junction proteins. Pediatr Res 57:453–457CrossRefPubMedGoogle Scholar
  34. 34.
    Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Irudayanathan FJ, Trasatti JP, Karande P, Nangia S (2016) Molecular architecture of the blood brain barrier tight junction proteins—a synergistic computational and in vitro approach. J Phys Chem B 120:77–88CrossRefPubMedGoogle Scholar
  36. 36.
    Kirk A, Campbell S, Bass P, Mason J, Collins J (2010) Differential expression of claudin tight junction proteins in the human cortical nephron. Nephrol Dial Transplant 25:2107–2119CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886PubMedGoogle Scholar
  38. 38.
    Krause G, Protze J, Piontek J (2015) Assembly and function of claudins: structure-function relationships based on homology models and crystal structures. Semin Cell Dev Biol 42:3–12CrossRefPubMedGoogle Scholar
  39. 39.
    Krug SM (2017) Contribution of the tricellular tight junction to paracellular permeability in leaky and tight epithelia. Ann N Y Acad Sci doi: 10.1111/nyas.13379 (in press)
  40. 40.
    Krug SM, Amasheh M, Dittmann I, Christoffel I, Fromm M, Amasheh S (2013) Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 34:275–282CrossRefPubMedGoogle Scholar
  41. 41.
    Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Krug SM, Günzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, Schulzke JD, Fromm M (2012) Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci 69:2765–2778CrossRefPubMedGoogle Scholar
  43. 43.
    Krug SM, Schulzke JD, Fromm M (2014) Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 36:166–176CrossRefPubMedGoogle Scholar
  44. 44.
    Li J, Zhuo M, Pei L, Rajagopal M, Yu AS (2014) Comprehensive cysteine-scanning mutagenesis reveals Claudin-2 pore-lining residues with different intrapore locations. J Biol Chem 289:6475–6484CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Liebner S, Kniesel U, Kalbacher H, Wolburg H (2000) Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 79:707–717CrossRefPubMedGoogle Scholar
  46. 46.
    Marcial MA, Carlson SL, Madara JL (1984) Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships. J Membr Biol 80:59–70CrossRefPubMedGoogle Scholar
  47. 47.
    Martinez-Palomo A, Erlij D (1975) Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A 72:4487–4491CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Menco BP (1988) Tight-junctional strands first appear in regions where three cells meet in differentiating olfactory epithelium: a freeze-fracture study. J Cell Sci 89(Pt 4):495–505PubMedGoogle Scholar
  49. 49.
    Milatz S, Breiderhoff T (2017) One gene, two paracellular ion channels—claudin-10 in the kidney. Pflügers Arch Eur J Physiol 469:115–121Google Scholar
  50. 50.
    Milatz S, Himmerkus N, Wulfmeyer VC, Drewell H, Mutig K, Hou J, Breiderhoff T, Müller D, Fromm M, Bleich M, Günzel D (2017) Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. Proc Natl Acad Sci U S A 114:E219–e227CrossRefPubMedGoogle Scholar
  51. 51.
    Milatz S, Krug SM, Rosenthal R, Günzel D, Müller D, Schulzke JD, Amasheh S, Fromm M (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798:2048–2057CrossRefPubMedGoogle Scholar
  52. 52.
    Milatz S, Piontek J, Hempel C, Grohe C, Fromm A, Lee IM, El-Athman R, Günzel D (2017) Tight junction strand formation by claudin-10 isoforms and claudin-10a/−10b chimeras. Ann N Y Acad Sci, doi: 10.1111/nyas.13393 (in press)
  53. 53.
    Milatz S, Piontek J, Schulzke JD, Blasig IE, Fromm M, Günzel D (2015) Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3. Biochem J 468:449–458CrossRefPubMedGoogle Scholar
  54. 54.
    Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M (2010) Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107:8011–8016CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pei L, Solis G, Nguyen MT, Kamat N, Magenheimer L, Zhuo M, Li J, Curry J, McDonough AA, Fields TA, Welch WJ, Yu AS (2016) Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J Clin Invest 126:2509–2518CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Piontek A, Rossa J, Protze J, Wolburg H, Hempel C, Günzel D, Krause G, Piontek J (2017) Polar and charged extracellular residues conserved among barrier-forming claudins contribute to tight junction strand formation. Ann N Y Acad Sci, doi: 10.1111/nyas.13341 (in press)
  58. 58.
    Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, Yu D, Turner JR, Gehring C, Rahn HP, Wolburg H, Blasig IE (2011) Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 68:3903–3918CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158CrossRefPubMedGoogle Scholar
  60. 60.
    Pricam C, Fisher KA, Friend DS (1977) Intramembranous particle distribution in human erythrocytes: effects of lysis, glutaraldehyde, and poly-L-lysine. Anat Rec 189:595–607CrossRefPubMedGoogle Scholar
  61. 61.
    Protze J, Eichner M, Piontek A, Dinter S, Rossa J, Blecharz KG, Vajkoczy P, Piontek J, Krause G (2015) Directed structural modification of Clostridium perfringens enterotoxin to enhance binding to claudin-5. Cell Mol Life Sci 72:1417–1432CrossRefPubMedGoogle Scholar
  62. 62.
    Roesinger B, Schiller A, Taugner R (1978) A freeze-fracture study of tight junctions in the pars convoluta and pars recta of the renal proximal tubule. Cell Tissue Res 186:121–133CrossRefPubMedGoogle Scholar
  63. 63.
    Rosenthal R, Günzel D, Krug SM, Schulzke JD, Fromm M, Yu AS (2017) Claudin-2-mediated cation and water transport share a common pore. Acta Physiol (Oxford, England) 219:521–536CrossRefGoogle Scholar
  64. 64.
    Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Günzel D, Fromm M (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123:1913–1921CrossRefPubMedGoogle Scholar
  65. 65.
    Rossa J, Ploeger C, Vorreiter F, Saleh T, Protze J, Günzel D, Wolburg H, Krause G, Piontek J (2014) Claudin-3 and claudin-5 protein folding and assembly into the tight junction are controlled by non-conserved residues in the transmembrane 3 (TM3) and extracellular loop 2 (ECL2) segments. J Biol Chem 289:7641–7653CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rossa J, Protze J, Kern C, Piontek A, Günzel D, Krause G, Piontek J (2014) Molecular and structural transmembrane determinants critical for embedding claudin-5 into tight junctions reveal a distinct four-helix bundle arrangement. Biochem J 464:49–60CrossRefPubMedGoogle Scholar
  67. 67.
    Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, Fujiyoshi Y (2015) Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science (New York, NY) 347:775–778CrossRefGoogle Scholar
  68. 68.
    Schiller A, Tiedemann K (1981) The mature mesonephric nephron of the rabbit embryo. III. Freeze-fracture studies. Cell Tissue Res 221:431–442CrossRefPubMedGoogle Scholar
  69. 69.
    Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci U S A 95:9660–9664CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Schnermann J, Huang Y, Mizel D (2013) Fluid reabsorption in proximal convoluted tubules of mice with gene deletions of claudin-2 and/or aquaporin1. Am J Physiol Ren Physiol 305:F1352–F1364CrossRefGoogle Scholar
  71. 71.
    Seldin DW (1999) Renal handling of calcium. Nephron 81(Suppl 1):2–7PubMedGoogle Scholar
  72. 72.
    Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Shinoda T, Shinya N, Ito K, Ohsawa N, Terada T, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Yokoyama S, Shirouzu M (2016) Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin. Sci Rep 6:33632CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Staehelin LA (1973) Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci 13:763–786PubMedGoogle Scholar
  75. 75.
    Staehelin LA (1974) Structure and function of intercellular junctions. Int Rev Cytol 39:191–283CrossRefPubMedGoogle Scholar
  76. 76.
    Staehelin LA, Mukherjee TM, Williams AW (1969) Freeze-etch appearance of the tight junctions in the epithelium of small and large intestine of mice. Protoplasma 67:165–184CrossRefPubMedGoogle Scholar
  77. 77.
    Steed E, Rodrigues NT, Balda MS, Matter K (2009) Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol 10:95CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science (New York, NY) 344:304–307CrossRefGoogle Scholar
  79. 79.
    Suzuki H, Tani K, Tamura A, Tsukita S, Fujiyoshi Y (2015) Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol 427:291–297CrossRefPubMedGoogle Scholar
  80. 80.
    Tőkés A-M, Szász AM, Juhász É, Schaff Z, Harsányi L, Molnár IA, Baranyai Z, Besznyák I, Zaránd A, Salamon F, Kulka J (2012) Expression of tight junction molecules in breast carcinomas analysed by array PCR and immunohistochemistry. Pathol Oncol Res 18:593–606CrossRefPubMedGoogle Scholar
  81. 81.
    Van Itallie C, Rahner C, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest 107:1319–1327CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, Colegio OR, Anderson JM (2008) The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci 121:298–305CrossRefPubMedGoogle Scholar
  83. 83.
    Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Ren Physiol 291:F1288–F1299CrossRefGoogle Scholar
  84. 84.
    Wada M, Tamura A, Takahashi N, Tsukita S (2013) Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology 144:369–380CrossRefPubMedGoogle Scholar
  85. 85.
    Watson CJ, Rowland M, Warhurst G (2001) Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Phys Cell Phys 281:C388–C397Google Scholar
  86. 86.
    Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107(Pt 5):1347–1357PubMedGoogle Scholar
  87. 87.
    Yu AS, Cheng MH, Angelow S, Günzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD (2009) Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol 133:111–127Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut für Klinische PhysiologieCharité—Universitätsmedizin BerlinBerlinGermany

Personalised recommendations