Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 469, Issue 9, pp 1051–1059 | Cite as

Senotherapy: growing old and staying young?

  • Roland Schmitt
Invited Review
Part of the following topical collections:
  1. Invited Review

Abstract

Cellular senescence, which has been linked to age-related diseases, occurs during normal aging or as a result of pathological cell stress. Due to their incapacity to proliferate, senescent cells cannot contribute to normal tissue maintenance and tissue repair. Instead, senescent cells disturb the microenvironment by secreting a plethora of bioactive factors that may lead to inflammation, regenerative dysfunction and tumor progression. Recent understanding of stimuli and pathways that induce and maintain cellular senescence offers the possibility to selectively eliminate senescent cells. This novel strategy, which so far has not been tested in humans, has been coined senotherapy or senolysis. In mice, senotherapy proofed to be effective in models of accelerated aging and also during normal chronological aging. Senotherapy prolonged lifespan, rejuvenated the function of bone marrow, muscle and skin progenitor cells, improved vasomotor function and slowed down atherosclerosis progression. While initial studies used genetic approaches for the killing of senescent cells, recent approaches showed similar effects with senolytic drugs. These observations open up exciting possibilities with a great potential for clinical development. However, before the integration of senotherapy into patient care can be considered, we need further research to improve our insight into the safety and efficacy of this strategy during short- and long-term use.

Keywords

Senescence Cellular senescence Senotherapy Senolysis Aging Rejuvenation BH-3 mimetics p16INK4a 

Notes

Compliance with ethical standards

Funding

This study was supported by the German Research Foundation (DFG): CRC 738 and SCHM 2146/6-1.

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Niederlander NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ, Eberhardt NL, Terzic A, van Deursen JM (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol 10:825–836CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM (2017) Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab 25:166–181CrossRefPubMedGoogle Scholar
  6. 6.
    Braun H, Schmidt BM, Raiss M, Baisantry A, Mircea-Constantin D, Wang S, Gross ML, Serrano M, Schmitt R, Melk A (2012) Cellular senescence limits regenerative capacity and allograft survival. J Am Soc Nephrol 23:1467–1473CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152:340–351CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705CrossRefPubMedGoogle Scholar
  9. 9.
    Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740CrossRefPubMedGoogle Scholar
  10. 10.
    Castillo-Quan JI, Kinghorn KJ, Bjedov I (2015) Genetics and pharmacology of longevity: the road to therapeutics for healthy aging. Adv Genet 90:1–101PubMedGoogle Scholar
  11. 11.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83CrossRefPubMedGoogle Scholar
  12. 12.
    Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354:472–477CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21:1424–1435CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20:255–264CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Croce CM, Reed JC (2016) Finally, an apoptosis-targeting therapeutic for cancer. Cancer Res 76:5914–5920CrossRefPubMedGoogle Scholar
  16. 16.
    de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157:1515–1526CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110CrossRefPubMedGoogle Scholar
  18. 18.
    Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16:99–109CrossRefPubMedGoogle Scholar
  19. 19.
    Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31:722–733CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gyawali B, Shimokata T, Honda K, Kondoh C, Hayashi N, Yoshino Y, Sassa N, Nakano Y, Gotoh M, Ando Y (2016) Muscle wasting associated with the long-term use of mTOR inhibitors. Mol Clin Oncol 5:641–646PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hashimoto M, Asai A, Kawagishi H, Mikawa R, Iwashita Y, Kanayama K, Sugimoto K, Sato T, Maruyama M, Sugimoto M (2016) Elimination of p19ARF-expressing cells enhances pulmonary function in mice. JCI Insight 1:e87732CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jacobs JJ, de Lange T (2005) p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 4:1364–1368CrossRefPubMedGoogle Scholar
  24. 24.
    Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, Cheng T, DePinho RA, Sharpless NE, Scadden DT (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–426PubMedGoogle Scholar
  25. 25.
    Kirkland JL, Tchkonia T (2015) Clinical strategies and animal models for developing senolytic agents. Exp Gerontol 68:19–25CrossRefPubMedGoogle Scholar
  26. 26.
    Koppelstaetter C, Schratzberger G, Perco P, Hofer J, Mark W, Ollinger R, Oberbauer R, Schwarz C, Mitterbauer C, Kainz A, Karkoszka H, Wiecek A, Mayer B, Mayer G (2008) Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 7:491–497CrossRefPubMedGoogle Scholar
  27. 27.
    Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–457CrossRefPubMedGoogle Scholar
  28. 28.
    Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Leverson JD, Phillips DC, Mitten MJ, Boghaert ER, Diaz D, Tahir SK, Belmont LD, Nimmer P, Xiao Y, Ma XM, Lowes KN, Kovar P, Chen J, Jin S, Smith M, Xue J, Zhang H, Oleksijew A, Magoc TJ, Vaidya KS, Albert DH, Tarrant JM, La N, Wang L, Tao ZF, Wendt MD, Sampath D, Rosenberg SH, Tse C, Huang DC, Fairbrother WJ, Elmore SW, Souers AJ (2015) Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med 7:279ra240CrossRefGoogle Scholar
  31. 31.
    Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, Thomas NE, Sharpless NE (2009) Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:439–448CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM, Caruso C, Curiel TJ, de Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L (2015) Interventions to slow aging in humans: are we ready? Aging Cell 14:497–510CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Malavolta M, Pierpaoli E, Giacconi R, Costarelli L, Piacenza F, Basso A, Cardelli M, Provinciali M (2016) Pleiotropic effects of tocotrienols and quercetin on cellular senescence: Introducing the perspective of Senolytic effects of phytochemicals. Curr Drug Targets 17:447–459CrossRefPubMedGoogle Scholar
  35. 35.
    Masoro EJ, Austad SN (2006) Handbook of the biology of aging. Elsevier Academic Press, Amsterdam, p xx 660 p Google Scholar
  36. 36.
    Matjusaitis M, Chin G, Sarnoski EA, Stolzing A (2016) Biomarkers to identify and isolate senescent cells. Ageing Res Rev 29:1–12CrossRefPubMedGoogle Scholar
  37. 37.
    McGlynn LM, Stevenson K, Lamb K, Zino S, Brown M, Prina A, Kingsmore D, Shiels PG (2009) Cellular senescence in pretransplant renal biopsies predicts postoperative organ function. Aging Cell 8:45–51CrossRefPubMedGoogle Scholar
  38. 38.
    Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 65:510–520CrossRefPubMedGoogle Scholar
  39. 39.
    Melk A, Schmidt BM, Vongwiwatana A, Rayner DC, Halloran PF (2005) Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant 5:1375–1382CrossRefPubMedGoogle Scholar
  40. 40.
    Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M, Fernandez-Marcos PJ, Munoz-Martin M, Blanco-Aparicio C, Pastor J, Gomez-Lopez G, De Martino A, Blasco MA, Abad M, and Serrano M (2016) Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354Google Scholar
  42. 42.
    Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118CrossRefPubMedGoogle Scholar
  43. 43.
    Neves J, Demaria M, Campisi J, Jasper H (2015) Of flies, mice, and men: evolutionarily conserved tissue damage responses and aging. Dev Cell 32:9–18CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL (2015) Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64:2289–2298CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casaclang-Verzosa G, Zhu Y, Schafer MJ, Tchkonia T, Kirkland JL, Miller JD (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15:973–977CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28:99–114CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sato S, Kawamata Y, Takahashi A, Imai Y, Hanyu A, Okuma A, Takasugi M, Yamakoshi K, Sorimachi H, Kanda H, Ishikawa Y, Sone S, Nishioka Y, Ohtani N, Hara E (2015) Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat Commun 6:7035CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schafer MJ, White TA, Evans G, Tonne JM, Verzosa GC, Stout MB, Mazula DL, Palmer AK, Baker DJ, Jensen MD, Torbenson MS, Miller JD, Ikeda Y, Tchkonia T, van Deursen JM, Kirkland JL, LeBrasseur NK (2016) Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65:1606–1615CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA (2004) The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene 23:379–385CrossRefPubMedGoogle Scholar
  50. 50.
    Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408CrossRefPubMedGoogle Scholar
  51. 51.
    Singh M, Jensen MD, Lerman A, Kushwaha S, Rihal CS, Gersh BJ, Behfar A, Tchkonia T, Thomas RJ, Lennon RJ, Keenan LR, Moore AG, Kirkland JL (2016) Effect of low-dose rapamycin on senescence markers and physical functioning in older adults with coronary artery disease: results of a pilot study. J Frailty Aging 5:204–207PubMedGoogle Scholar
  52. 52.
    Sorrentino JA, Krishnamurthy J, Tilley S, Alb JG Jr, Burd CE, Sharpless NE (2014) p16INK4a reporter mice reveal age-promoting effects of environmental toxicants. J Clin Invest 124:169–173CrossRefPubMedGoogle Scholar
  53. 53.
    Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130CrossRefPubMedGoogle Scholar
  54. 54.
    Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM (2017) Cellular senescence in renal ageing and disease. Nat Rev Nephrol 13:77–89CrossRefPubMedGoogle Scholar
  55. 55.
    Tasdemir N, Lowe SW (2013) Senescent cells spread the word: non-cell autonomous propagation of cellular senescence. EMBO J 32:1975–1976CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Waaijer ME, Parish WE, Strongitharm BH, van Heemst D, Slagboom PE, de Craen AJ, Sedivy JM, Westendorp RG, Gunn DA, Maier AB (2012) The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11:722–725CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, Zhou D, Zheng G (2016) Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY) 8:2915–2926CrossRefGoogle Scholar
  60. 60.
    Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, and Kirkland JL (2016) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med SciGoogle Scholar
  61. 61.
    Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL (2015) Targeting senescent cells enhances adipogenesis and metabolic function in old age. elife 4:e12997PubMedPubMedCentralGoogle Scholar
  62. 62.
    Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N, Jensen MD, LeBrasseur NK, Kirkland JL (2015) JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112:E6301–E6310CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Xu M, Tchkonia T, Kirkland JL (2016) Perspective: targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol Res 111:152–154CrossRefPubMedGoogle Scholar
  64. 64.
    Xu Y, Li N, Xiang R, Sun P (2014) Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem Sci 39:268–276CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-Porath I, Krizhanovsky V (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7:11190CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL (2014) Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr Opin Clin Nutr Metab Care 17:324–328CrossRefPubMedGoogle Scholar
  67. 67.
    Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15:428–435CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany

Personalised recommendations