Pflügers Archiv - European Journal of Physiology

, Volume 469, Issue 9, pp 1151–1161 | Cite as

Mu and kappa opioid receptors of the periaqueductal gray stimulate and inhibit thermogenesis, respectively, during psychological stress in rats

  • Caroline Cristina-Silva
  • Victor Martins
  • Luciane H. Gargaglioni
  • Kênia C. BícegoEmail author
Part of the following topical collections:
  1. Neuroscience


The periaqueductal gray matter (PAG) is rich in mu and kappa opioid receptors, and this system is involved in thermoregulation, analgesia, and defensive behaviors. No study approached the involvement of the PAG opioids in body temperature (Tb) regulation during psychological stress such as restraint. Because activation of mu and kappa receptors increases and reduces Tb, respectively, we tested the hypothesis that they exert excitatory and inhibitory modulation, respectively, of the restraint-induced fever in rats. To this end, Tb, heat loss index (HLI, inference for peripheral vasoconstriction/vasodilation), and oxygen consumption (inference for thermogenesis) were monitored in unanesthetized rats, restrained or unrestrained, before and after intra-PAG microinjection of the selective mu opioid receptor antagonist (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 cyclic, CTAP; 1 and 10 μg/100 nL) or the selective kappa opioid receptor antagonist (nor-binaltorphimine dihydrochloride, nor-BNI; 1 and 4 μg/100 nL) or saline (100 nL). CTAP and nor-BNI did not change the Tb or HLI of euthermic animals. During restraint, Tb increased (1.0 ± 0.1 °C) in all groups; however, this effect was lower in those animals treated with CTAP and higher in animals treated with nor-BNI. The HLI decreased during restraint and increased after animals were released, but this response was not affected by any treatment. Restraint stress increased oxygen consumption (35.9 ± 3.9% elevation), but this response was diminished by CTAP and overstimulated by nor-BNI. Confirming our hypothesis, the results indicate that the mu and kappa opioid receptors in the PAG of rats play a pyrogenic and antipyretic role, respectively, during fever induced by restraint by affecting the thermogenic but not the heat conservation effector.


Body temperature Heat loss index Oxygen consumption Opioid receptors Nor-BNI CTAP 



This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP undergraduate fellowship 2013/02813-9 to C.C.S.; grant 2015/04849-6 to K.C.B.) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES graduate fellowships to C.C.S. and V.M.). This study was part of the activities developed by C.C.S. for obtaining a master’s degree at the Joint Graduate Program in Physiological Sciences (PIPGCF) from UFSCar/UNESP. We thank Euclides Roberto Secato and Damares Perecim Roviero for their technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. 1.
    Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP (1997) Blood-brain barrier permeability and bioavailability of a highly potent and mu-selective opioid receptor antagonist, CTAP: comparison with morphine. J Pharmacol Exp Ther 280(1):402–409PubMedGoogle Scholar
  2. 2.
    Adler MW, Geller EB (1993) Physiological functions of opioids: temperature regulation. In: A Herz (ed) Handbook of experimental pharmacology: opioids II. Springer, Berlin, pp. 205–229Google Scholar
  3. 3.
    Adler MW, Hawk C, Geller EB (1983) Comparison of intraventricular morphine and opioid peptides on body temperature temperature of rats. In: Lomax P, Schönbaum E (eds) Environment drugs and thermoregulation. Karger, Basel, pp 90–93Google Scholar
  4. 4.
    Adler MW, Geller EB, Rosow CE, Cochin J (1988) The opioid system and temperature regulation. Annu Rev Pharmacol Toxicol 28:429–449. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  5. 5.
    Akil H, Watson SJ, Young E, Khachaturian H, Walker JM (1984) Endogenous opioids: biology and function. Annu Rev Neurosci 7:223–255. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  6. 6.
    Almeida MC, Steiner AA, Coimbra NC, Branco LG (2004) Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus. J Physiol 558(Pt 1):283–294. doi: 10.1113/jphysiol.2004.066654 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Almeida MC, Steiner AA, Branco LGS, Romanovsky AA (2006) Cold-seeking behavior as a thermoregulatory strategy in systemic inflammation. Eur J Neurosci 23(12):3359–3367. doi: 10.1111/j.1460-9568.2006.04854.x CrossRefPubMedGoogle Scholar
  8. 8.
    Appelbaum BD, Holtzman SG (1986) Stress-induced changes in the analgesic and thermic effects of opioid peptides in the rat. Brain Res 377(2):330–336CrossRefPubMedGoogle Scholar
  9. 9.
    Baker AK, Meert TF (2002) Functional effects of systemically administered agonists and antagonists of mu delta and kappa opioid receptor subtypes on body temperature in mice. J Pharmacol Exp Ther 302(3):1253–1264. doi: 10.1124/jpet.102.037655 CrossRefPubMedGoogle Scholar
  10. 10.
    Barros RC, Zimmer ME, Branco LG, Milsom WK (2001) Hypoxic metabolic response of the golden-mantled ground squirrel. J Appl Physiol 91(2):603–612PubMedGoogle Scholar
  11. 11.
    Behbehani MM (1995) Functional caracteristics of the midbrain periaqueductal gray. Prog Neurobiol 46(6):575–605CrossRefPubMedGoogle Scholar
  12. 12.
    Behbehani MM, Fields HL (1979) Evidence that an excitatory connection between the periaqueductal grey and nucleus raphe magnus mediates stimulation produced analgesia. Brain Res 170(1):85–93CrossRefPubMedGoogle Scholar
  13. 13.
    Benamar K, Xin L, Geller EB, Adler MW (2000) Blockade of lipopolysaccharide-induced fever by a μ-opioid receptor-selective antagonist in rats. Eur J Pharmacol 401(2):161–165CrossRefPubMedGoogle Scholar
  14. 14.
    Benamar K, McMenamin M, Geller EB, Chung YG, Pintar JE, Adler MW (2005) Unresponsiveness of mu-opioid receptor knockout mice to lipopolysaccharide-induced fever. Br J Pharmacol 144(8):1029–1031. doi: 10.1038/sj.bjp.0706145 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bícego KC, Barros RCH, Branco LGS (2007) Physiology of temperature regulation: comparative aspects. Comp Biochem Physiol A Mol Integr Physiol 147(3):616–639. doi: 10.1016/j.cbpa.2006.06.032 CrossRefPubMedGoogle Scholar
  16. 16.
    Bishop D (2003) Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med 33(6):439–454CrossRefPubMedGoogle Scholar
  17. 17.
    Bodnar RJ, Klein GE (2005) Endogenous opiates and behaviour: 2004. Peptides 26(12):2629–2711. doi: 10.1016/j.peptides.2005.06.010 CrossRefPubMedGoogle Scholar
  18. 18.
    Bradley EA, Geller EB, Piliero T, Adler MW (1991) Actions of μ-selective opioid agonists and antagonists on body temperature in the rat. FASEB J5:A861Google Scholar
  19. 19.
    Broccardo M, Improta G (1992) Hypothermic effect of D-Ala-deltorphin II a selective δ opioid receptor agonist. Neurosci Lett 139(2):209–212CrossRefPubMedGoogle Scholar
  20. 20.
    Burkett JP, Spiegel LL, Inoue K, Az M, Young LJ (2011) Activation of μ-opioid receptors in the dorsal striatum is necessary for adult social attachment in monogamous prairie voles. Neuropsychopharmacology 36(11):2200–2210. doi: 10.1038/npp.2011.117 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cabanac M, Gosselin F (1993) Emotional fever in the lizard Callopistesmaculatus (Teiidae). Anim Beh 46(1):200–202. doi: 10.1006/anbe.1993.1178 CrossRefGoogle Scholar
  22. 22.
    Cavicchini E, Candeletti S, Ferri S (1988) Effects of dynorphins on body temperature of rats. Pharmacol Res Commun 20(7):603–604CrossRefPubMedGoogle Scholar
  23. 23.
    Chen XM, Nishi M, Nagashima K, Shibata M, Kanosue K (2002) The caudal periaqueductal gray participates in the activation of brown adipose tissue in rats. Neurosci Lett 331(1):17–20CrossRefPubMedGoogle Scholar
  24. 24.
    Chen X, McClatchy DB, Geller EB, Tallarida RJ, Adler MW (2005) The dynamic relationship between mu and kappa opioid receptors in body temperature regulation. Life Sci 78(4):329–333. doi: 10.1016/j.lfs.2005.04.084 CrossRefPubMedGoogle Scholar
  25. 25.
    Chen T, Hui R, Wang XL, Zhang T, Dong YX, Li YQ (2008) Origins of endomorphin-immunoreactive fibers and terminals in different columns of the periaqueductal gray in the rat. J Comp Neurol 509(1):72–87. doi: 10.1002/cne.21728 CrossRefPubMedGoogle Scholar
  26. 26.
    De Menezes RC, Zaretsky DV, Fontes MA, Dimicco JA (2009) Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. J Physiol 587(Pt6):1201–1215. doi: 10.1113/jphysiol.2008.161463 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    De Paula D, Steiner A, Branco LGS (2000) The nitric oxide pathway is a important modulator of stress-induced fever in rats. Physiol Beh 70(5):505–511CrossRefGoogle Scholar
  28. 28.
    Del-Ben CM, Graeff FG (2009) Panic disorder: is the PAG involved? Neural Plasticity 2009(2009):1–9Google Scholar
  29. 29.
    Endoh T, Matsuura H, Tanaka C, Nagase H (1992) Nor-binaltorphimine: a potent and selective kappa-opioid receptor antagonist with long-lasting activity in vivo. Arch Int Pharmacodyn Ther 316:30–42PubMedGoogle Scholar
  30. 30.
    Falcon-Lesses M, Proger SH (1930) Psychogenic fever. N Engl J Med 203:1034–1036. doi: 10.1056/NEJM193011202032113 CrossRefGoogle Scholar
  31. 31.
    Finley JCW, Lindstrom P, Petrusz P (1981) Immunocytochemical localization of beta-endorphincontaining neurons in rat brain. Neuroendocrinology 33(1):28–42CrossRefPubMedGoogle Scholar
  32. 32.
    Fraga D, Machado RR, Fernandes LC, Souza GE, Zampronio AR (2008) Endogenous opioids: role in prostaglandin-dependent and independent fever. Am J Physiol Regul Integr Comp Physiol 294(2):R411–R420. doi: 10.1152/ajpregu.00465.2007 CrossRefPubMedGoogle Scholar
  33. 33.
    Gargaglioni LH, Bícego KC, Nucci TB, Branco LG (2006) Serotoninergic receptors in the anteroventral preoptic region modulate the hypoxic ventilatory response. Respir Physiol Neurobiol 153(1):1–13. doi: 10.1016/j.resp.2005.09.003 CrossRefPubMedGoogle Scholar
  34. 34.
    Geller EB, Hawk C, Keinath SH, Tallarida RJ, Adler MW (1983) Subclasses of opioids based on body temperature change in rats: acute subcutaneous administration. J Pharmacol Exp Ther 225(2):391–398PubMedGoogle Scholar
  35. 35.
    Geller EB, Rowan CH, Adler MW (1986) Body temperature effects of opioids in rats: intracerebroventricular administration. Pharmacol Biochem Behav 24(6):1761–1765CrossRefPubMedGoogle Scholar
  36. 36.
    Gutstein HB, Mansour A, Watson SJ, Akil H, Fields HL (1998) Mu and kappa opioid receptors in periaqueductal gray and rostral ventromedial medulla. Neuroreport 9(8):1777–1781CrossRefPubMedGoogle Scholar
  37. 37.
    Hall CW, Behbehani MM (1998) Synaptic effects of nitric oxide on enkephalinergic, GABAergic, and glutamatergic networks of the rat periaqueductal gray. Brain Res 805(1–2):69–87CrossRefPubMedGoogle Scholar
  38. 38.
    Handler CM, Geller EB, Adler MW (1992) Effect of mu-, kappa- and delta-selective opioid agonists on thermoregulation in the rat. Pharmacol Biochem Behav 43(4):1209–1216CrossRefPubMedGoogle Scholar
  39. 39.
    Handler CM, Piliero TC, Geller EB, Adler MW (1994) Effect of ambient temperature on the ability of mu-, kappa- and delta-selective opioid agonists to modulate thermoregulatory mechanisms in rat. J Pharmacol Exp Ther 268(2):847–855PubMedGoogle Scholar
  40. 40.
    Herráez-Baranda LA, Carretero J, González-Sarmiento R, Laorden ML, Milanés MV, Rodríguez RE (2005) Evidence of involvement of the nNOS and the kappa-opioid receptor in the same intracellular network of the rat periaqueductal gray that controls morphine tolerance and dependence. Brain Res Mol Brain Res 137(1–2):166–173. doi: 10.1016/j.molbrainres.2005.03.003 CrossRefPubMedGoogle Scholar
  41. 41.
    Hjelmstad GO, Fields HL (2001) Kappa opioid receptor inhibition of glutamatergic transmission in the nucleus accumbens shell. J Neurophysiol 85(3):1153–1158PubMedGoogle Scholar
  42. 42.
    Hjelmstad GO, Fields HL (2003) Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and gaba release through different mechanisms. J Neurophysiol 89(5):2389–2395. doi: 10.1152/jn.01115.2002 CrossRefPubMedGoogle Scholar
  43. 43.
    Hudson PM, Lumb BM (1996) Neurones in the midbrain periaqueductal grey send collateral projections to nucleus raphe magnus and the rostral ventrolateral medulla in the rat. Brain Res 733(1):138–141CrossRefPubMedGoogle Scholar
  44. 44.
    Huey RB, Slatkin M (1976) Cost and benefits of lizard thermoregulation. Q Rev Biol 51(1):363–384CrossRefPubMedGoogle Scholar
  45. 45.
    IUPS Thermal Commission (2001) Glossary of terms for thermal physiology. Jpn J Physiol 51:245–280Google Scholar
  46. 46.
    James IF, Goldstein A (1984) Site-directed alkylation of multiple opioid receptors. I. Binding selectivity. Mol Pharmacol 25(3):337–342PubMedGoogle Scholar
  47. 47.
    Jordan B, Devi LA (1998) Molecular mechanisms of opioid receptor signal transduction. Br J Anaesth 81(1):12–19CrossRefPubMedGoogle Scholar
  48. 48.
    Kataoka N, Hioki H, Kaneko T, Nakamura K (2014) Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab 20(2):346–358. doi: 10.1016/j.cmet.2014.05.018 CrossRefPubMedGoogle Scholar
  49. 49.
    Kishioka S, Kiguchi N, Kobayashi Y, Yamamoto C, Saika F, Wakida N, Ko MC, Woods JH (2013) Pharmacokinetic evidence for the long-lasting effect of nor-binaltorphimine, a potent kappa opioid receptor antagonist, in mice. Neurosci Lett 552:98–102. doi: 10.1016/j.neulet.2013.07.040 CrossRefPubMedGoogle Scholar
  50. 50.
    Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71(1):93–127PubMedGoogle Scholar
  51. 51.
    Kluger MJ, O’reilly B, Shope TR, Vander AJ (1987) Further evidence that stress hyperthermia is a fever. Physiol Behav 39(6):763–766CrossRefPubMedGoogle Scholar
  52. 52.
    Kosterlitz HW, Corbett AD, Gillan MGC, McKnight AT, Paterson SJ, Robson LE (1985) Recent developments in the bioassay of opioids. Regul Pept Suppl 4:1–7PubMedGoogle Scholar
  53. 53.
    Koteja P (1996) Measuring energy metabolism with open-flow respirometric systems: which design to choose? Funct Ecol 10(5):675–677. doi: 10.2307/2390179 CrossRefGoogle Scholar
  54. 54.
    Law PY, Loh HH, Li CH (1979) Properties and location of beta-endorphin receptor in rat brain. Proc Natl Acad Sci U S A76(11):5455–5459CrossRefGoogle Scholar
  55. 55.
    Ledoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184. doi: 10.1146/annurev.neuro.23.1.155 CrossRefPubMedGoogle Scholar
  56. 56.
    Ledoux J (2003) The emotional brain fear and the amygdale. Cell Mol Neurobiol 23(4–5):727–738CrossRefPubMedGoogle Scholar
  57. 57.
    Lemay LG, Vander AJ, Kluger MJ (1990) The effect of physiological stress on plasma interleukin-6 activity in rats. Physiol Behav 47(5):957–961CrossRefPubMedGoogle Scholar
  58. 58.
    Lkhagvasuren B, Nakamura Y, Oka T, Sudo N, Nakamura K (2011) Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region. Eur J Neurosci 34(9):1442–1452. doi: 10.1111/j.1460-9568.2011.07863.x CrossRefPubMedGoogle Scholar
  59. 59.
    Lopes LT, Patrone LG, Coimbra NC, Bícego KC, Gargaglioni LH (2012) Periaqueductal gray matter modulates the hypercapnic ventilatory response. Pflugers Arch 464(2):155–166. doi: 10.1007/s00424-012-1119-6 CrossRefPubMedGoogle Scholar
  60. 60.
    Lopes LT, Biancardi V, Vieira EB, Leite-Panissi C, Bicego KC, Gargaglioni LH (2014) Participation of the dorsal periaqueductal grey matter in the hypoxic ventilatory response in unanaesthetized rats. Acta Physiol 211(3):528–537. doi: 10.1111/apha.12254 CrossRefGoogle Scholar
  61. 61.
    Lovick TA, Key BJ (1996) Inhibitory effect of nitric oxide on neuronal activity in the periaqueductal grey matter of the rat. Exp Brain Res 108(3):382–388CrossRefPubMedGoogle Scholar
  62. 62.
    Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu delta and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7(8):2445–2464PubMedGoogle Scholar
  63. 63.
    Minami M, Kuraishi Y, Yamaguchi T, Nakai S, Hirai Y, Satoh M (1991) Immobilization stress induces interleukin-1β mRNA in the rat hypothalamus. Neurosci Lett 123(2):254–256CrossRefPubMedGoogle Scholar
  64. 64.
    Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19(5):741–756. doi: 10.1016/j.cmet.2014.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mugnaini E, Oertel W (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: Bjorklund A, Hokfel T (eds) Handbook of chemical neuroanatomy 4: GABA and neuropeptides in the CNS. Elsevier, AmsterdamGoogle Scholar
  66. 66.
    Nakamura K, Morrison SF (2007) Central efferent pathways mediating skin cooling evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 292(1):R127–R136. doi: 10.1152/ajpregu.00427.2006 CrossRefPubMedGoogle Scholar
  67. 67.
    Oka T (2015) Psychogenic fever: how psychological stress affects body temperature in the clinical population. Temperature 2(3):368–378. doi: 10.1080/23328940.2015.1056907 CrossRefGoogle Scholar
  68. 68.
    Oka T, Oka K, Hori T (2001) Mechanisms and mediators of psychological stress-induced rise in core temperature. Psychosom Med 63(3):476–486CrossRefPubMedGoogle Scholar
  69. 69.
    Paterson SJ, Robson LE, Kosterlitz HW (1983) Classification of opioid receptors. Br Med Bull 39:31–36CrossRefPubMedGoogle Scholar
  70. 70.
    Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic, San DiegoGoogle Scholar
  71. 71.
    Rawls SM, Cowan A (2006) Modulation of delta opioid-evoked hypothermia in rats by WAY 100635 and fluoxetine. Neurosci Lett 398(3):319–324CrossRefPubMedGoogle Scholar
  72. 72.
    Reichling DB (1991) GABAergic neuronal circuitry in the periaqueductal gray matter. In: Depaulis A, Brandler R (eds) The midbrain periaqueductal gray matter. Plenum, New York, pp 329–344CrossRefGoogle Scholar
  73. 73.
    Romanovsky AA, Ivanov AI, Shimansky YP (2002) Molecular biology of thermoregulation: selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J Appl Physiol 92(6):2667–2679. doi: 10.1152/japplphysiol.01173.2001 CrossRefPubMedGoogle Scholar
  74. 74.
    Salmi P, Kela J, Arvidsson U, Wahlestedt C (2003) Functional interactions between δ- and μ-opioid receptors in rat thermoregulation. Eur J Pharmacol 458(1–2):101–106CrossRefPubMedGoogle Scholar
  75. 75.
    Sanches DB, Carnio EC, Branco LGS (2003) Central nNOS is involved in restraint stress-induced fever: evidence for a cGMP pathway. Physiol Behav 80(1):139–145CrossRefPubMedGoogle Scholar
  76. 76.
    Sanders SK, Shekhar A (1991) Blockade of GABAA receptors in the region of the anterior basolateral amygdala of rats elicits increases in heart rate and blood pressure. Brain Res 567(1):101–110CrossRefPubMedGoogle Scholar
  77. 77.
    Scarpellini CS, Gargaglioni LH, Branco LGS, Bícego KC (2009) Role of preoptic opioid receptors in the body temperature reduction during hypoxia. Brain Res 25:66–74. doi: 10.1016/j.brainres.2009.06.039 CrossRefGoogle Scholar
  78. 78.
    Singer R, Harker CT, Vander AJ, Kluger MJ (1986) Hyperthermia induced by open-field stress is blocked by salicylate. Physiol Behav 36(6):1179–1182CrossRefPubMedGoogle Scholar
  79. 79.
    Soltis RP, Cook JC, Gregg AE, Stratton JM, Flickinger KA (1998) EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdale. Am J Phys 275(2 Pt 2):R624–R631Google Scholar
  80. 80.
    Soriano RN, Branco LG (2010) Reduced stress fever is accompanied by increased glucocorticoids and reduced PGE2 in adult rats exposed to endotoxin as neonates. J Neuroimmunol 225(1–2):77–81. doi: 10.1016/j.jneuroim.2010.04.018 CrossRefPubMedGoogle Scholar
  81. 81.
    Spencer RL, Hruby VJ, Burks TF (1988) Body temperature response profiles for selective mu delta and kappa opioid agonists in restrained and unrestrained rats. J Pharmacol Exp Ther 246(1):92–101PubMedGoogle Scholar
  82. 82.
    Steiner AA, Reste G, Branco LG (2003) Role of the brain hemeoxygenase-carbon monoxide pathway in stress fever in rats. Neurosci Lett 341(3):193–196CrossRefPubMedGoogle Scholar
  83. 83.
    Tattersall G, Milsom WK (2003) Transient peripheral warming accompanies the hypoxic metabolic response in the golden-mantled ground squirrel. J Exp Biol 206(Pt 1):33–42CrossRefPubMedGoogle Scholar
  84. 84.
    Tavares RF, Correa FM (2006) Role of the medial prefrontal cortexin cardiovascular responses to acute restraint in rats. Neuroscience 143(1):231–240. doi: 10.1016/j.neuroscience.2006.07.030 CrossRefPubMedGoogle Scholar
  85. 85.
    Terlouw EMC, Kent S, Cremona S, Dantzer R (1996) Effect of intracerebroventricular administration of vasopressin on stress-induced hyperthermiain rats. Physiol Behav 60(2):417–424CrossRefPubMedGoogle Scholar
  86. 86.
    Tsai SM, Lin MT, Wang JJ, Huang WT (2003) Pyrogens enhance-endorphins release in hypothalamus and trigger fever that can be attenuated by buprenorphine. J Pharmacol Sci 93(2):155–162CrossRefPubMedGoogle Scholar
  87. 87.
    Tseng LF, Wei ET, Loh HH, Li CH (1980) β-Endorphin: central sites of analgesia catalepsy and body temperature changes in rats. J Pharmacol Exp Ther 214(2):328–332PubMedGoogle Scholar
  88. 88.
    Vaughan CW, Ingram SL, Connor MA, Christie MJ (1997) How opioids inhibit GABA-mediated neurotransmission. Nature 390(6660):611–614. doi: 10.1038/37610 CrossRefPubMedGoogle Scholar
  89. 89.
    Vizin RCL, Scarpellini CDS, Ishikawa DT, Correa GM, De Souza CO, Gargaglioni LH, Carrettiero DC, Bícego KC, Almeida MC (2015) TRPV4 activates autonomic and behavioural warmth-defence responses in Wistar rats. Acta Physiol 214(2):275–289. doi: 10.1111/apha.12477 CrossRefGoogle Scholar
  90. 90.
    Widdowson PS, Griffiths EC, Slater P (1983) Body temperature effects of opioids administered into the periaqueductal grey area of rat brain. Regul Pept 7(3):259–267CrossRefPubMedGoogle Scholar
  91. 91.
    Wilson JR, Howard BA (1996) Effects of cold acclimation and central opioid processes on thermoregulation in rats. Pharmacol Biochem Behav 54(2):317–325CrossRefPubMedGoogle Scholar
  92. 92.
    Xin L, Geller EB, Adler MW (1997) Body temperature and analgesic effects of selective mu and kappa opioid receptor agonists microdialyzed into rat brain. J Pharmacol Exp Ther 281(1):499–507PubMedGoogle Scholar
  93. 93.
    Xing J, Li DP, Li J (2008) Role of GABA receptors in nitric oxide inhibition of dorsolateral periaqueductal gray neurons. Neuropharmacology 54(4):734–744. doi: 10.1016/j.neuropharm.2007.12.008 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Yoshida K, Konishi M, Nagashima K, Saper CB, Kanosue K (2005) Fos activation in hypothalamic neurons during cold or warm exposure: projections to periaqueductal gray matter. Neuroscience1 33(4):1039–1046. doi: 10.1016/j.neuroscience.2005.03.044 CrossRefGoogle Scholar
  95. 95.
    Yu LC, Cai YP (1993) Arousal following intra-preoptic area administration of naltrexone ICI 174864 or nor-BNI in hibernating ground squirrels. Brain Res 57(1):31–35Google Scholar
  96. 96.
    Zhang YH, Hosono T, Yanase-Fujiwara M, Chen XM, Kanosue K (1997a) Effect of midbrain stimulations on thermoregulatory vasomotor responses in rats. J Physiol 503(Pt 1):177–186CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhang YH, Yamada K, Hosono T, Chen XM, Shiosaka S, Kanosue K (1997b) Efferent neuronal organization of thermoregulatory vasomotor control. Ann N Y Acad Sci 813:117–122CrossRefPubMedGoogle Scholar
  98. 98.
    Zhang W, Hayward LF, Davenport PW (2007) Respiratory responses elicited by rostral versus caudal dorsal periaqueductal gray stimulation in rats. Auton Neurosci 134:45–54CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Caroline Cristina-Silva
    • 1
    • 2
  • Victor Martins
    • 1
    • 2
  • Luciane H. Gargaglioni
    • 1
    • 2
  • Kênia C. Bícego
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian SciencesSão Paulo State UniversityJaboticabalBrazil
  2. 2.National Institute of Science and Technology in Comparative Physiology (INCT-Fisiologia Comparada)JaboticabalBrazil
  3. 3.Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e VeterináriasUniversidade Estadual Paulista Júlio de Mesquita FilhoJaboticabalBrazil

Personalised recommendations