Physiome approach for the analysis of vascular flow reserve in the heart and brain

Abstract

This work reviews the key aspects of coronary and neurovascular flow reserves with an emphasis on physiomic modeling characteristics by the use of a variety of numerical approaches. First, we explain the definition of fractional flow reserve (FFR) in coronary artery and introduce its clinical significance. Then, computational researches for obtaining FFR are reviewed, and their clinical outcomes are compared. In the case of cerebrovascular reserve (CVR), in spite of substantial progress in the simulation of cerebral hemodynamics, only a few computational studies exist. Thus, we discuss the limitations of CVR simulation study and suggest the challenging issue to overcome these. Also, the future direction of physiomic researches for the flow reserves in coronary arteries and cerebral arteries is described. Also, we introduce a machine learning algorithm trained by the existing physiomic simulation data of flow reserve and suggest a prospective research direction related to this.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Adiputra Y, Chen SL (2015) Clinical relevance of coronary fractional flow reserve: art-of-state. Chin Med J 128(10):1399–1406. doi:10.4103/0366-6999.156805

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ (2007) Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40(8):1794–1805. doi:10.1016/j.jbiomech.2006.07.008

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Berry C, van’t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, McClure JD, Fearon WF, Barbato E, Tonino PA, De Bruyne B, Pijls NH, Oldroyd KG (2013) VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): a multicenter study in consecutive patients. J Am Coll Cardiol 61(13):1421–1427. doi:10.1016/j.jacc.2012.09.065

    Article  PubMed  Google Scholar 

  4. 4.

    Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, Dijkshoorn ML, Gijsen FJ, Ouhlous M, van Geuns RM (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274(3):674–683. doi:10.1148/radiol.14140992

    Article  PubMed  Google Scholar 

  5. 5.

    Deng SB, Jing XD, Wang J, Huang C, Xia S, Du JL, Liu YJ, She Q (2015) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in coronary artery disease: a systematic review and meta-analysis. Int J Cardiol 184:703–709. doi:10.1016/j.ijcard.2015.03.025

    Article  PubMed  Google Scholar 

  6. 6.

    Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. Eur Heart J 36(47):3359–3367. doi:10.1093/eurheartj/ehv444

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G, Hink U, Schuchlenz HW, Feuchtner G, Gilard M, Andreini D, Jensen JM, Hadamitzky M, Chiswell K, Cyr D, Wilk A, Wang F, Rogers C, Hlatky MA (2016) 1-Year outcomes of FFRCT-guided care in patients with suspected coronary disease: the PLATFORM study. J Am Coll Cardiol 68(5):435–445. doi:10.1016/j.jacc.2016.05.057

    Article  PubMed  Google Scholar 

  8. 8.

    Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33(1):87–94

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Grinberg L, Anor T, Cheever E, Madsen JR, Karniadakis GE (2009) Simulation of the human intracranial arterial tree. Philos Trans A Math Phys Eng Sci 367(1896):2371–2386. doi:10.1098/rsta.2008.0307

    Article  PubMed  Google Scholar 

  10. 10.

    Hickman M, Jeetley P, Senior R (2004) Usefulness of myocardial contrast echocardiography derived coronary flow reserve to accurately determine severity of left anterior descending coronary artery stenosis. Am J Cardiol 93(9):1159–1162. doi:10.1016/j.amjcard.2004.01.047

    Article  PubMed  Google Scholar 

  11. 11.

    Hlatky MA, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, Curzen N, Purcell I, Gutberlet M, Rioufol G (2015) Quality-of-life and economic outcomes of assessing fractional flow reserve with computed tomography angiography: PLATFORM. J Am Coll Cardiol 66(21):2315–2323. doi:10.1016/j.jacc.2015.09.051

    Article  PubMed  Google Scholar 

  12. 12.

    Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schobinger M, Thomas F, Sharma P, Comaniciu D (2016) A machine learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52. doi:10.1152/japplphysiol.00752.2015

    Article  PubMed  Google Scholar 

  13. 13.

    Kent S, Briggs A, Eckermann S, Berry C (2013) Are value of information methods ready for prime time? An application to alternative treatment strategies for NSTEMI patients. Int J Technol Assess Health Care 29(4):435–442. doi:10.1017/S0266462313000433

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kim KH, Doh JH, Koo BK, Min JK, Erglis A, Yang HM, Park KW, Lee HY, Kang HJ, Kim YJ (2014) A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc Interv. 7(1):72–78. doi:10.1016/j.jcin.2013.05.024

    Article  PubMed  Google Scholar 

  15. 15.

    Ko NU, Achrol AS, Chopra M, Saha M, Gupta D, Smith WS, Higashida RT, Young WL (2005) Cerebral blood flow changes after endovascular treatment of cerebrovascular stenoses. AJNR Am J Neuroradiol 26(3):538–542

    PubMed  Google Scholar 

  16. 16.

    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997. doi:10.1016/j.jacc.2011.06.066

    Article  PubMed  Google Scholar 

  17. 17.

    Kruk M, Wardziak Ł, Demkow M, Pleban W, Pręgowski J, Dzielińska Z, Witulski M, Witkowski A, Rużyłło W, Kępka C (2016) Workstation-based calculation of CTA-based FFR for intermediate stenosis. JACC Cardiovasc Imaging. 9(6):690–699. doi:10.1016/j.jcmg.2015.09.019

    Article  PubMed  Google Scholar 

  18. 18.

    Kwon SS, Chung EC, Park JS, Kim GT, Kim JW, Kim KH, Shin ES, Shim EB (2014) A novel patient-specific model to compute coronary fractional flow reserve. Prog Biophys Mol Biol 116(1):48–55. doi:10.1016/j.pbiomolbio.2014.09.003

    Article  PubMed  Google Scholar 

  19. 19.

    Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, Junejo S, Ahmed N, Lee MM, Shaukat A, O’Donnell A, Nam J, Briggs A, Henderson R, McConnachie A, Berry C (2015) Fractional flow reserve vs. angiography in guiding management to optimize outcomes in non-ST-segment elevation myocardial infarction: the British Heart Foundation FAMOUS-NSTEMI randomized trial. Eur Heart J 36(2):100–111. doi:10.1093/eurheartj/ehu338

    Article  PubMed  Google Scholar 

  20. 20.

    Lee KE, Kwon SS, Ji YC, Shin ES, Choi JH, Kim SJ, Shim EB (2016a) Estimation of the flow resistances exerted in coronary arteries using a vessel length-based method. Pflugers Arch 468(8):1449–1458. doi:10.1007/s00424-016-1831-8

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Lee KE, Kim GT, Lee JS, Chung JH, Shin ES, Shim EB (2016b) A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress. Int J Cardiol 222:799–805. doi:10.1016/j.ijcard.2016.07.153

    Article  PubMed  Google Scholar 

  22. 22.

    Leipsic J, Yang TH, Thompson A, Koo BK, Mancini GJ, Taylor C, Budoff MJ, Part HB, Berman DS, Min JK (2014) CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study. Am J Roentqenol 202(5):989–994. doi:10.2214/AJR.13.11441

    Article  Google Scholar 

  23. 23.

    Leng X, Scalzo F, Ip HL, Johnson M, Fong AK, Fan FS, Chen X, Soo YO, Miao Z, Liu L, Feldmann E, Leung TW, Liebeskind DS, Wong KS (2014a) Computational fluid dynamics modeling of symptomatic intracranial atherosclerosis may predict risk of stroke recurrence. PLoS One 9(5):e97531

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Leng X, Wong KS, Liebeskind DS (2014b) Evaluating intracranial atherosclerosis rather than intracranial stenosis. Stroke 45(2):645–651

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Liebeskind DS, Feldmann E (2013) Fractional flow in cerebrovascular disorders. Interv Neurol 1(2):87–99

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Liu J, Yan Z, Pu Y, Shiu WS, Wu J, Chen R, Leng X, Qin H, Liu X, Jia B, Song L, Wang Y, Miao Z, Wang Y, Liu L, Cai XC (2016) Functional assessment of cerebral artery stenosis: a pilot study based on computational fluid dynamics. J Cereb Blood Flow Metab 4

  27. 27.

    Magosso E, Ursino M (2001) A mathematical model of CO2 effect on cardiovascular regulation. Am J Physiol Heart Circ Physiol 281(5):H2036–H2052

    CAS  PubMed  Google Scholar 

  28. 28.

    Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Am D, Apruzzese P (2012a) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308(12):1237–1245. doi:10.1001/2012.jama.11274

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Min JK, Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, Defrance T, Leipsic J (2012b) Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: results from the prospective multicenter international DISCOVER-FLOW study. J Cardiovasc Comput Tomogr 6(3):191–199. doi:10.1016/j.jcct.2012.04.010

    Article  PubMed  Google Scholar 

  30. 30.

    Min JK, Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning AM, DeFrance T, Lansky A (2012c) Usefulness of noninvasive fractional flow reserve computed from coronary computed tomographic angiograms for intermediate stenoses confirmed by quantitative coronary angiography. Am J Cardiol 110(7):971–976. doi:10.1016/j.amjcard.2012.05.033

    Article  PubMed  Google Scholar 

  31. 31.

    Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J, Nørgaard BL, Pijls NJ, De Bruyne B (2015) Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging 8(10):1209–1222. doi:10.1016/j.jcmg.2015.08.006

    Article  PubMed  Google Scholar 

  32. 32.

    Miyoshi T, Osawa K, Hiroshi I, Kanazawa S, Kimura T, Shiomi H, Kuribayashi S, Jinzaki M, Kawamura A, Bezerra H (2014) Non-invasive computed fractional flow reserve from computed tomography (CT) for diagnosing coronary artery disease—Japanese results from NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). Circulation J 79(2):406–412. doi:10.1253/circj.CJ-14-1051

    Article  Google Scholar 

  33. 33.

    Moore S, David T (2006) Auto-regulated blood flow in the cerebral-vasculature. Journal of Biomechanical Science and Engineering 1(1):93–106. doi:10.1299/jbse.1.93

    Article  Google Scholar 

  34. 34.

    Moore SM, Moorhead KT, Chase JG, David T, Fink J (2005) One-dimensional and three-dimensional models of cerebrovascular flow. J Biomech Eng 127(3):440–449

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Morris PD, Ryan D, Morton AC, Lycett R, Lawford PV, Hose DR, Gunn JP (2013) Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc Interv. 6(2):149–157. doi:10.1016/j.jcin.2012.08.024

    Article  PubMed  Google Scholar 

  36. 36.

    Morris PD, van de Vosse FN, Lawford PV, Hose DR, Gunn JP (2015) “Virtual” (computed) fractional flow reserve: current challenges and limitations. JACC Cardiovasc Interv 8(8):1009–1017. doi:10.1016/j.jcin.2015.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Moir S, Haluska BA, Jenkins C, McNab D, Marwick TH (2005) Myocardial blood volume and perfusion reserve responses to combined dipyridamole and exercise stress: a quantitative approach to contrast stress echocardiography. J Am Soc Echocardiogr 18(11):1187–1193. doi:10.1016/j.echo.2005.04.004

    Article  PubMed  Google Scholar 

  38. 38.

    Nakazato R, Park HB, Berman DS, Gransar H, Koo BK, Erglis A, Lin FY, Dunning AM, Budoff MJ, Malpeso J (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity results from the DeFACTO study. Circulation: Cardiovascular Imaging 6(6):881–889. doi:10.1161/CIRCIMAGING.113.000297

    PubMed  Google Scholar 

  39. 39.

    Nam J, Briggs A, Layland J, Oldroyd KG, Curzen N, Sood A, Balachandran K, Das R, Junejo S, Eteiba H, Petrie MC, Lindsay M, Watkins S, Corbett S, O’Rourke B, O’Donnell A, Stewart A, Hannah A, McConnachie A, Henderson R, Berry C (2015) Fractional flow reserve (FFR) versus angiography in guiding management to optimise outcomes in non-ST segment elevation myocardial infarction (FAMOUS-NSTEMI) developmental trial: cost-effectiveness using a mixed trial- and model-based methods. Cost Eff Resour Alloc 13:19. doi:10.1186/s12962-015-0045-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Nijjer SS, Sen S, Petraco R, Escaned J, Echavarria-Pinto M, Broyd C, Al-Lamee R, Foin N, Foale RA, Malik IS, Mikhail GW, Sethi AS, Al-Bustami M, Kaprielian RR, Khan MA, Baker CS, Bellamy MF, Hughes AD, Mayet J, Francis DP, Di Mario C, Davies JE (2014) Pre-angioplasty instantaneous wave-free ratio pullback provides virtual intervention and predicts hemodynamic outcome for serial lesions and diffuse coronary artery disease. JACC Cardiovasc Interv. 7(12):1386–1396. doi:10.1016/j.jcin.2014.06.015

    Article  PubMed  Google Scholar 

  41. 41.

    Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE (2015) The instantaneous wave-free ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc Revasc Med 16(3):167–171. doi:10.1016/j.carrev.2015.01.006

    Article  PubMed  Google Scholar 

  42. 42.

    Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155. doi:10.1016/j.jacc.2013.11.043

    Article  PubMed  Google Scholar 

  43. 43.

    Papafaklis MI, Muramatsu T, Ishibashi Y, Lakkas LS, Nakatani S, Bourantas CV, Ligthart J, Onuma Y, Echavarria-Pinto M, Tsirka G, Kotsia A, Nikas DN, Mogabgab O, van Geuns RJ, Naka KK, Fotiadis DI, Brilakis ES, Garcia-Garcia HM, Escaned J, Zijlstra F, Michalis LK, Serruys PW (2014) Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire-fractional flow reserve. EuroIntervention. 10(5):574–583. doi:10.4244/EIJY14M07_01

    Article  PubMed  Google Scholar 

  44. 44.

    Peiro J, Sherwin S, Parker K, Franke V, Formaggia L, Lamponi D, Quarteroni A. (2003) Numerical simulation of arterial pulse propagation using one-dimensional models. Advances in Computational Bioengineering 6

  45. 45.

    Perdikaris P, Grinberg L, Karniadakis GE (1994) Multiscale modeling and simulation of brain blood flow. Phys Fluids 28(2):021304

    Article  Google Scholar 

  46. 46.

    Petraco R, Park JJ, Sen S, Nijjer SS, Malik IS, Echavarría-Pinto M, Asrress KN, Nam CW, Macías E, Foale RA, Sethi A, Mikhail GW, Kaprielian R, Baker CS, Lefroy D, Bellamy M, Al-Bustami M, Khan MA, Gonzalo N, Hughes AD, Francis DP, Mayet J, Di Mario C, Redwood S, Escaned J, Koo BK, Davies JE (2013) Hybrid iFR-FFR decision-making strategy: implications for enhancing universal adoption of physiology-guided coronary revascularisation. EuroIntervention 8(10):1157–1165. doi:10.4244/EIJV8I10A179

    Article  PubMed  Google Scholar 

  47. 47.

    Pijls NH (2000) De Bruyne B. Coronary pressure Second edition 195:1–448. doi:10.1007/978-94-015-9564-3

    Article  Google Scholar 

  48. 48.

    Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, el Gamal MI (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92(11):3183–3193

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, Koolen JJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708. doi:10.1056/NEJM199606273342604

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Qi X, Zhou F, Wan J, Zhou L, Xu W, Cheng J, Mao Y, Ma W, Ji W, Yang C (2014) Noninvasive assessment of cerebral artery stenoses from anatomic computed tomography angiography. Postepy Kardiol Interwencyjnej 10(1):18–20

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Renker M, Schoepf UJ, Wang R, Meinel FG, Rier JD, Bayer RR, Möllmann H, Hamm CW, Steinberg DH, Baumann S (2014) Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol 114(9):1303–1308. doi:10.1016/j.amjcard.2014.07.064

    Article  PubMed  Google Scholar 

  52. 52.

    Sankaran S, Leo G, Taylor CA (2015) Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput Methods Appl Mech Eng 297:167–190. doi:10.1016/j.cma.2015.08.014

    Article  Google Scholar 

  53. 53.

    Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 59(15):1392–1402. doi:10.1016/j.jacc.2011.11.003

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Steiner LA, Andrews PJ (2006) Monitoring the injured brain: ICP and CBF. Br J Anaesth 97(1):26–38. doi:10.1093/bja/ael110

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241. doi:10.1016/j.jacc.2012.11.083

    Article  PubMed  Google Scholar 

  56. 56.

    Thompson AG, Raju R, Blanke P, Yang TH, Mancini GBJ, Budoff MJ, Norgaard BL, Min JK, Leipsic JA (2015) Diagnostic accuracy and discrimination of ischemia by fractional flow reserve CT using a clinical use rule: results from the determination of fractional flow reserve by anatomic computed tomographic angiography study. J Cardiovasc Comput Tomogr. 9(2):120–128. doi:10.1016/j.jcct.2015.01.008

    Article  PubMed  Google Scholar 

  57. 57.

    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43(1):151–159

    Article  Google Scholar 

  58. 58.

    Tu S, Holm NR, Koning G, Huang Z, Reiber JH (2011) Fusion of 3d qca and ivus/oct. Int J Cardiovasc Imaging 27:197–207. doi:10.1007/s10554-011-9808-2

    Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv. 7(7):768–777. doi:10.1016/j.jcin.2014.03.004

    Article  PubMed  Google Scholar 

  60. 60.

    Ursino M, Ter Minassian A, Lodi CA, Beydon L (2000) Cerebral hemodynamics during arterial and CO2 pressure changes: in vivo prediction by a mathematical model. Am J Physiol Heart Circ Physiol 279(5):H2439–H2455

    CAS  PubMed  Google Scholar 

  61. 61.

    Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M (2009) The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. Am J Neuroradiol 30(5):876–884

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    van de Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JA, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 10(8):439–452. doi:10.1038/nrcardio.2013.86

    Article  PubMed  Google Scholar 

  63. 63.

    Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM (2005) Noninvasive assessment of local pulse pressure: importance of brachial-to-radial pressure amplification. Hypertension 46(1):244–248

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Willie CK, Tzeng YC, Fisher JA, Ainslie PN (2014) Integrative regulation of human brain blood flow. J Physiol 592(5):841–859. doi:10.1113/jphysiol.2013.268953

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD (1990) Effects of adenosine on human coronary arterial circulation. Circulation 82:1595–1606

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Zhang Z, Takarada S, Molloi S (2011) Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation. Am J Physiol Heart Circ Physiol 300(6):H2096–H2104. doi:10.1152/ajpheart.01123.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all our lab members for their supports. And we thank the anonymous reviewers and editors for their valuable comments.

Authors’ contributions

KE Lee, AJ Ryu, ES Shin, and EB Shim all participated in the study. All authors read and approved the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eun Bo Shim.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

The data is deposited in Biosystems Engineering Lab of Kangwon National University. Please contact the correspondence author Eun Bo Shim, ebshim@kangwon.ac.kr, for the usage of data.

Ethics approval and consent to participate

The subjects all gave their written informed consent in accordance with local ethics committee of Kangwon National University.

The data used in this research has been approved by the ethics committee of Kangwon National University.

Funding

This work was supported by the National Research foundation of Korea (NRF) grant (NRF-2015R1A2A1A0100774).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, K.E., Ryu, A., Shin, E. et al. Physiome approach for the analysis of vascular flow reserve in the heart and brain. Pflugers Arch - Eur J Physiol 469, 613–628 (2017). https://doi.org/10.1007/s00424-017-1961-7

Download citation

Keywords

  • Flow reserve
  • Coronary artery
  • Cerebrovascular system
  • Physiomic approach