Advertisement

KCa3.1 (IK) modulates pancreatic cancer cell migration, invasion and proliferation: anomalous effects on TRAM-34

  • B. Bonito
  • D. R. P Sauter
  • A. Schwab
  • M. B. A Djamgoz
  • I. NovakEmail author
Ion channels, receptors and transporters

Abstract

In the recent decades, ion channels became the focus of cancer biologists, as many channels are overexpressed in tumour tissue and functionally they are linked to abnormal cell behaviour with processes including apoptosis, chemo- and radioresistance, proliferation and migration. KCa3.1 is a Ca2+-activated K+ channel that plays a central role in tumour progression in many cancer types. Therefore, the aim of the present study was to investigate KCa3.1 expression in pancreatic cancer cells and assess possible implications to disease progression. Using qPCR technique, we found abundant expression of KCa3.1 in pancreatic cancer cell lines. Patch clamp measurements on MiaPaCa-2 cells revealed a Ca2+-activated K+ current that matched biophysical characteristics as described for KCa3.1. Moreover, the current was sensitive to the commonly used channel modulators TRAM-34, clotrimazole and DC-EBIO, and it was abolished following transient gene knockdown of KCa3.1. We utilized both pharmacology and RNAi to assess a possible role of the channel in tumour cell behaviour. We found that the channel supported MiaPaCa-2 cell proliferation. Using RNAi protocols, we also identified KCa3.1 as important entity in cell invasion. However, TRAM-34 had unexpected stimulatory effects on cell migration and invasion estimated in various assays. Moreover, TRAM-34 increased intracellular Ca2+. In conclusion, we found prominent functional expression of KCa3.1 in pancreatic cancer cells. We provide evidence that the channel has a key role in cell proliferation and for the first time identify KCa3.1 as important entity in PDAC cell migration. We further reveal anomalous effects of TRAM-34.

Keywords

KCa3.1 KCNN4 TRAM-34 Clotrimazole DC-EBIO Pancreatic ductal adenocarcinoma Migration 

Notes

Acknowledgments

This work was supported by the Marie Curie Initial Training Network IonTraC (Grant Agreement No. 289648), by The Danish Council for Independent Research/Natural Sciences (DFF - 4002-00162) and the German Cancer Aid (Project No. 110261). We are grateful to Ph.D. student Marco Tozzi for helping out with Boyden chamber assays and to E.H. Larsen and E.K. Hoffmann for fruitful discussions. Technical assistance of Pernille Roshof and Sabine Mally is greatly appreciated.

Compliance with ethical standards

Conflicts of interest

None of the authors have any conflict of interests.

Ethical standards

All experiments were carried out in compliance to the current laws of Denmark and the UK.

References

  1. 1.
    Abdullaev IF, Rudkouskaya A, Mongin A, Kuo Y-H (2010) Calcium-activated potassium channels BK and IK1 are functionally expressed in human gliomas but do not regulate cell proliferation. PLoS One 5:e12304CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Agarwal JJ, Zhu Y, Zhang QY, Mongin A, Hough LB (2013) TRAM-34, a putatively selective blocker of intermediate-conductance, calcium-activated potassium channels, inhibits cytochrome P450 activity. PLoS One 8:4–9CrossRefGoogle Scholar
  3. 3.
    Benzaquen L, Brugnara C, Byers HR, Gattoni-Celli S, Halperin J (1995) Clotrimazole inhbits cell proliferation in vitro and in vivo. Nat Med 1:534–540CrossRefPubMedGoogle Scholar
  4. 4.
    Bernardini M, Pla AF, Prevarskaya N, Gkika D (2015) Human transient receptor potential (TRP) channels expression profiling in carcinogenesis. Int J Dev Biol 59:399–406CrossRefPubMedGoogle Scholar
  5. 5.
    Bi D, Toyama K, Lemaitre V, Takai J, Fan F, Jenkins DP, Wulff H, Gutterman DD, Park F, Miura H (2013) The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem 288:15843–15853CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bulk E, Ay A, Hammadi M, Ouadid-Ahidouch H, Hascher A, Rohde C, Thoennissen NH, Schmidt E, Marra A, Hillejan L, Jacobs AH, Klein H, Dugas M, Berdel WE, Müller-Tidow C, Schwab A (2015) Epigenetic dysregulation of KCa3.1 channels induces poor prognosis in lung cancer. Int J Cancer 137(6):1306–1317CrossRefPubMedGoogle Scholar
  7. 7.
    Catacuzzeno L, Aiello F, Fioretti B, Sforna L, Castigli E, Ruggieri P, Tata AM, Calogero A, Franciolini F (2011) Serum-activated K+ and Cl currents underlay U87-MG glioblastoma cell migration. J Cell Physiol 226:1926–1933CrossRefPubMedGoogle Scholar
  8. 8.
    Chadet S, Jelassi B, Wannous R, Angoulvant D, Chevalier S, Besson P, Roger S (2014) The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 35:1238–1247CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Y-J, Raman G, Bodendiek S, O’Donnell ME, Wulff H (2011) The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a rat model of ischemia/reperfusion stroke. J CerebBlood Flow Metab 31:2363–2374CrossRefGoogle Scholar
  10. 10.
    Conductance PYIK, Conductance PXSC, Hede SE, Amstrup J, Christoffersen BC, Novak I (1999) Purinoceptors evoke different electrophysiological responses in pancreatic ducts. P2Y inhibits K+ conductance, and P2X stimulates cation conductance. J Biol Chem 274:31784–31791CrossRefGoogle Scholar
  11. 11.
    Conforti L, Petrovic M, Mohamm D, Ma Q, Barone S, Filipovich AH (2003) Hypoxia regulates expression and activity of Kv1.3 channels in T lymphocytes: a possible role in T cell proliferation. J Immunol 170:695–702CrossRefPubMedGoogle Scholar
  12. 12.
    Crottès D, Félix R, Meley D, Chadet S, Herr F, Audiger C, Soriani O, Vandier C, Roger S, Angoulvant D, Velge-Roussel F (2016) Immature human dendritic cells enhance their migration through KCa3.1 channel activation. Cell Calcium 59:198–207CrossRefPubMedGoogle Scholar
  13. 13.
    Cruse G (2006) Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 61:880–885CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cuddapah VA, Sontheimer H (2011) Ion channels and tranporters in cancer. 2. Ion channels and the control of cancer cell migration. Am J Physiol Cell Physiol 301:541–549CrossRefGoogle Scholar
  15. 15.
    Dong H, Shim K-N, Li JMJ, Estrema C, Ornelas T, Nguyen F, Liu S, Ramamoorthy SL, Ho S, Carethers JM, Chow JYC (2010) Molecular mechanisms underlying Ca2+-mediated motility of human pancreatic duct cells. Am J Physiol Cell Physiol 299:C1493–C1503CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ferreira R, Schlichter LC (2013) Selective activation of KCa3.1 and CRAC channels by P2Y2 receptors promotes Ca2+ signaling, store refilling and migration of rat microglial cells. PLoS One 8:e62345CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Franceschi L, Saadane N, Trudel M, Alper SL, Brugnara C, Beuzard Y (1994) Treatment with oral clotrimazole blocks Ca2+-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice: a model for therapy of sickle cell disease. J Clin Invest 93:1670–1676CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Furukawa T, Duguid W, Rosenberg L, Viallet J, Galloway D, Tsao M (1996) Short communication long-term culture and immortalization of epithelial cells from normal adult human. Am J Pathol 148:1763–1770PubMedPubMedCentralGoogle Scholar
  19. 19.
    Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14:1–15CrossRefGoogle Scholar
  20. 20.
    Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39:453–463PubMedGoogle Scholar
  21. 21.
    Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the channel, IKCa1 : a potential immunosuppressant. Proc Natl Acad Sci U S A 97:8151–8156CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Grössinger EM, Weiss L, Zierler S, Rebhandl S, Krenn PW, Hinterseer E, Schmölzer J, Asslaber D, Hainzl S, Neureiter D, Egle P-HJ, Hartmann TN, Greil R, Kerschbaum HH (2014) Targeting proliferation of chronic lymphocytic leukemia (CLL) cells through KCa3.1 blockade. Leukemia 28:954–958CrossRefPubMedGoogle Scholar
  23. 23.
    Hayashi M, Wang J, Hede SE, Novak I (2012) An intermediate-conductance Ca2+-activated K+ channel is important for secretion in pancreatic duct cells. Am J Physiol Cell Physiol 303:C151–C159CrossRefPubMedGoogle Scholar
  24. 24.
    Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho R (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249CrossRefPubMedGoogle Scholar
  25. 25.
    Horng C-T, Chiang N-N, Chen I-L, Liang W-Z, Chen I-S, Kuo D-H, Shieh P-C, Jan C-R (2013) Effect of clotrimazole on cytosolic Ca2+ rise and viability in HA59T human hepatoma cells. J Recept Signal Transduct Res 33:89–95CrossRefPubMedGoogle Scholar
  26. 26.
    Jacobsen KS, Zeeberg K, Sauter DRP, Poulsen K, Hoffmann EK, Schwab A (2013) The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration. Pflugers Arch 465:1753–1762CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638CrossRefPubMedGoogle Scholar
  28. 28.
    Jan CR, Tseng CJ, Chou KJCH (2000) Novel effects of clotrimazole on Ca2+ signaling in Madin Darby canine kidney cells. Life Sci 66:3–6Google Scholar
  29. 29.
    Jensen B, Strøbæk D, Christophersen P, Jørgensen T, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol Cell Physiol 275:848–856Google Scholar
  30. 30.
    Jung S, Kim K, Hille B, Nguyen TD, Koh D (2006) Pattern of Ca2+ increase determines the type of secretory mechanism activated in dog pancreatic duct epithelial cells. J Physiol 576:163–178CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kovalenko I, Glasauer A, Schöckel L, Sauter DRP (2016) Identification of KCa3.1 channel as a novel regulator of oxidative phosphorylation in a subset of pancreatic carcinoma cell lines. PLoS One 11:1–20CrossRefGoogle Scholar
  32. 32.
    Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackière F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28:1792–1806CrossRefPubMedGoogle Scholar
  33. 33.
    Lang F, Shumilina E, Ritter M, Gulbins E, Vereninov A, Huber SM (2006) Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib Nephrol 152:142–160CrossRefPubMedGoogle Scholar
  34. 34.
    Lee EL, Hasegawa Y, Shimizu T, Okada Y (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. Am J Physiol Cell Physiol 294:1398–1406CrossRefGoogle Scholar
  35. 35.
    Litan A, Langhans S (2015) Cancer as a channelopathy: ion channels and pumps in tumor development and progression. Front Cell Neurosci 9:86. doi: 10.3389/fncel.2015.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lotz MM, Wang H, Song JC, Pories SE, Matthews JB (2004) K+ channel inhibition accelerates intestinal epithelial cell wound healing. Wound Repair Regen 12:565–574CrossRefPubMedGoogle Scholar
  37. 37.
    Lutz TA, Wild S, Boutellier S, Sutter D, Volkert M, Scharrer E (1998) Hyperpolarization of the cell membrane of mouse hepatocytes by lactate, pyruvate, and fructose is due to Ca2+-dependent activation of K+ channels and of the Na/K+-ATPase. Biochim Biophys Acta 1372:359–369CrossRefPubMedGoogle Scholar
  38. 38.
    Mazzuca MQ, Wlodek ME, Dragomir NM, Parkington HC, Tare M (2010) Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol 588:1997–2010CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nakajima T, Kubota N, Tsutsumi T, Oguri A, Imuta H, Jo T, Oonuma H, Soma M, Meguro K, Takano H, Nagase T, Nagata T (2009) Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells. Br J Pharmacol 156:420–431CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol 287:C125–C134CrossRefPubMedGoogle Scholar
  41. 41.
    Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J, Tsao MS (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157:1623–1631CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh C-C (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471:157–164CrossRefPubMedGoogle Scholar
  43. 43.
    Rodrigues A, Gibson G, Loannides C, Parke D (1987) Interactions of imidazole antifungal agents with purified cytochrome P-450 proteins. Biochem Pharmacol 36:4277–4281CrossRefPubMedGoogle Scholar
  44. 44.
    Rooman I, Real FX (2012) Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut 61:449–458CrossRefPubMedGoogle Scholar
  45. 45.
    Roy N, Hebrok M (2015) Regulation of cellular identity in cancer. Dev Cell 35:674–684CrossRefPubMedGoogle Scholar
  46. 46.
    Ruggieri P, Mangino G, Fioretti B, Catacuzzeno L, Puca R, Ponti D, Miscusi M, Franciolini F, Ragona G, Calogero A (2012) The inhibition of KCa3.1 channels activity reduces cell motility in glioblastoma derived cancer stem cells. PLoS One 7:e47825Google Scholar
  47. 47.
    Ruiz C, Martins JR, Rudin F, Schneider S, Dietsche T, Fischer CA, Tornillo L, Terracciano LM, Schreiber R, Bubendorf L, Kunzelmann K (2012) Enhanced expression of ANO1 in head and neck squamous cell carcinoma causes cell migration and correlates with poor prognosis. PLoS One 7:1–12Google Scholar
  48. 48.
    Sauter DRP, Novak I, Pedersen SF, Larsen EH, Hoffmann EK (2015) ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC). Pflugers Arch 467:1495–1508CrossRefPubMedGoogle Scholar
  49. 49.
    Sauter DRP, Sørensen CE, Rapedius M (2016) pH-sensitive K+ channel TREK-1 is a novel target in pancreatic cancer Daniel. BBA - Mol Basis Dis 1862:1994–2003CrossRefGoogle Scholar
  50. 50.
    Schilling T, Eder C (2007) TRAM-34 inhibits nonselective cation channels. Pflugers Arch 454:559–563CrossRefPubMedGoogle Scholar
  51. 51.
    Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913CrossRefPubMedGoogle Scholar
  52. 52.
    Schwab A, Wulf A, Schulz C, Kessler W, Nechyporuk-Zloy V, Römer M, Reinhardt J, Weinhold D, Dieterich P, Stock C, Hebert SC (2006) Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol 206:86–94CrossRefPubMedGoogle Scholar
  53. 53.
    Strøbaek D, Brown D, Jenkins D, Chen Y-J, Coleman N, Ando Y, Chiu P, Jørgensen S, Demnitz J, Wulff H, Christophersen P (2013) NS6180, a new KCa3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 168:432–444CrossRefPubMedGoogle Scholar
  54. 54.
    Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev 5:231–246CrossRefPubMedGoogle Scholar
  55. 55.
    Thompson-vest N, Shimizu Y, Hunne B, Furness JB (2006) The distribution of intermediate-conductance, calcium- activated, potassium ( IK ) channels in epithelial cells. J Anat 208:219–229CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wei C, Wang X, Zheng M, Cheng H (2012) Calcium gradients underlying cell migration. Curr Opin Cell Biol 24:254–261CrossRefPubMedGoogle Scholar
  57. 57.
    Wienen F, Laug S, Baumann K, Schwab A, Just S, Holzgrabe U (2003) Determination of clotrimazole in mice plasma by capillary electrophoresis. J Pharm Biomed Anal 30:1879–1887CrossRefPubMedGoogle Scholar
  58. 58.
    Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier J-M, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457CrossRefPubMedGoogle Scholar
  59. 59.
    Xie R, Xu J, Wen G, Jin H, Liu X, Yang Y, Ji B, Jiang Y, Song P, Dong H, Tuo B (2014) The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular carcinoma cells induced by ATP. J Biol Chem 289:19137–19149CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang Y, Feng Y, Chen L (2015) Effects of intermediate-conductance Ca2+-activated K+ channels on human endometrial carcinoma cells. Cell Biochem Biophys 72:515–532CrossRefPubMedGoogle Scholar
  61. 61.
    Zundler S, Caioni M, Müller M, Strauch U, Kunst C, Woelfel G (2016) ) K+ channel inhibition differentially regulates migration of intestinal epithelial cells in inflamed vs. non-inflamed conditions in a PI3K/Akt-mediated manner. PLoS One 11:0147736CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Section for Cell Biology and Physiology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research GroupImperial College LondonLondonUK
  3. 3.Institut für Physiologie IIUniversity of MünsterMünsterGermany

Personalised recommendations