Advertisement

Ciclopirox enhances pancreatic islet health by modulating the unfolded protein response in diabetes

  • Chrysovalantou Mihailidou
  • Ioulia Chatzistamou
  • Athanasios G. Papavassiliou
  • Hippokratis KiarisEmail author
Molecular and cellular mechanisms of disease

Abstract

Pancreatic dysfunction during diabetes is linked to the induction of endoplasmic reticulum (ER) stress on pancreatic beta (β) cells. Our laboratory recently discovered that p21 protects from diabetes by modifying the outcome of ER stress response. In the present study, we explored the antidiabetic activity of ciclopirox (CPX), an iron chelator and recently described activator of p21 expression. The effects of CPX in beta cell survival and function were assessed in cultured islets in vitro as well as in diabetic mice in vivo. The consequences of CPX in high glucose-induced insulin release and reactive oxygen species (ROS) production were also evaluated. Islet survival assays confirmed the significance of p21 in the regulation of glucotoxicity and suggested that CPX counteracts glucotoxicity in a manner that depends on p21. In vivo, administration of CPX in wild-type (WT) diabetic mice restored glucose homeostasis. In WT-cultured islets, CPX suppressed the expression of ER stress markers BiP, GRP94, and CHOP and reduced the levels of ROS during culture at high glucose. This reduction of ER stress may be associated with the ability of CPX to inhibit insulin release. Iron citrate stimulated insulin release, which was inhibited by CPX that functions as an iron chelator. It is conceivable that inhibition of insulin production constrains ER stress in islets promoting their survival and thus protecting from diabetes in vivo. This unfolded protein response (UPR)-antagonizing activity of CPX suggests application for the management not only of diabetes but also of other conditions related to ER stress.

Keywords

Unfolded protein response Glucotoxicity Glucose Chaperone Beta cells 

Notes

Acknowledgments

This study was supported by grant RAG051976A from NIH/NIA.

Compliance with ethical standards

Animal care and experiments were carried out in accordance with the guidelines of the Animal Facilities by the Athens University Medical School Ethics Committee in agreement with the European Union (approval no. 7924 /12/12/2014).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Back SH, Kaufman RJ (2012) Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem 81:767–793CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Blagosklonny MV (2002) Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 1:391–393CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng K, Ho K, Stokes R, Scott C, Lau SM, Hawthorne WJ et al (2010) Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets. J Clin Invest 120:2171–2183CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dioufa N, Chatzistamou I, Farmaki E, Papavassiliou AG, Kiaris H (2012) P53 antagonizes the unfolded protein response and inhibits ground glass hepatocyte development during endoplasmic reticulum stress. Exp Biol Med (Maywood, NJ) 237:1173–1180CrossRefGoogle Scholar
  5. 5.
    Erion KA, Ferrante T, Corkey B, Deeney J (2013) Iron stimulates insulin secretion in clonal pancreatic β-cells and dissociated rat islets. FASEB J 27:1010.13Google Scholar
  6. 6.
    Han J, Song B, Kim J, Kodali VK, Pottekat A, Wang M, Hassler J, Wang S, Pennathur S, Back SH, Katze MG, Kaufman RJ (2015) Antioxidants complement the requirement for protein chaperone function to maintain β-cell function and glucose homeostasis. Diabetes 62:2892–2904CrossRefGoogle Scholar
  7. 7.
    Henquin JC, Mourad NI, Nenquin M (2012) Disruption and stabilization of β-cell actin microfilaments differently influence insulin secretion triggered by intracellular Ca2+ mobilization or store-operated Ca2+ entry. FEBS Lett 586:89–95. doi: 10.1016/j.febslet.2011.11.030 CrossRefPubMedGoogle Scholar
  8. 8.
    Hernandez AM, Colvin ES, Chen YC, Geiss SL, Eller LE, Fueger PT (2013) Upregulation of p21 activates the intrinsic apoptotic pathway in β-cells. Am J Physiol Endocrinol Metab 304:E1281–E1290CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang J, Jones D, Luo B, Sanderson M, Soto J, Abel ED et al (2011) Iron overload and diabetes risk: a shift from glucose to fatty acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes 60:80–87CrossRefPubMedGoogle Scholar
  10. 10.
    Li D-S, Yuan Y-H, Tu H-J, Liang Q-L, Dai L-J (2009) A protocol for islet isolation from mouse pancreas. Nat Protoc 4:1649–1652CrossRefPubMedGoogle Scholar
  11. 11.
    Linden T, Katschinski DM, Eckhardt K, Scheid A, Pagel H, Wenger RH (2003) The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis., The FASEB Journal : Official Publication of the Federation of American Societies for. Exp Biol 17:761–763Google Scholar
  12. 12.
    Ma TC, Langley B, Ko B, Wei N, Gazaryan IG, Zareen N, Yamashiro DJ, Willis DE, Ratan RR (2013) A screen for inducers of p21waf1/cip1 identifies HIF prolyl hydroxylase inhibitors as neuroprotective agents with antitumor properties. Neurobiol Dis 49:13–21CrossRefPubMedGoogle Scholar
  13. 13.
    Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A 105:18525–18530CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mihailidou C, Papazian I, Papavassiliou AG, Kiaris H (2010) CHOP-dependent regulation of p21/waf1 during ER stress. Cell Physiol Biochem 25:761–766CrossRefPubMedGoogle Scholar
  15. 15.
    Mihailidou C, Chatzistamou I, Papavassiliou A, Kiaris H (2015a) Improvement of chemotherapeutic drug efficacy by endoplasmic reticulum stress. Endocr Relat Cancer 22(2):229–238CrossRefPubMedGoogle Scholar
  16. 16.
    Mihailidou C, Chatzistamou I, Papavassiliou AG, Kiaris H (2015b) Regulation of P21 during diabetes-associated stress of the endoplasmic reticulum. Endocr Relat Cancer 22:217–228CrossRefPubMedGoogle Scholar
  17. 17.
    Minden MD, Hogge DE, Weir SJ, Kasper J, Webster DA, Patton L et al (2014) Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies. Am J Hematol 89:363–368CrossRefPubMedGoogle Scholar
  18. 18.
    Mkrtchian S (2015) Targeting unfolded protein response in cancer and diabetes. Endocr Relat Cancer. 22(3):C1–C4. doi: 10.1530/ERC-15-0106 CrossRefPubMedGoogle Scholar
  19. 19.
    Mlynarczyk C, Fåhraeus R (2014) Endoplasmic reticulum stress sensitizes cells to DNA damage-induced apoptosis through p53-dependent suppression of p21(CDKN1A. Nat Commun 5:5067CrossRefPubMedGoogle Scholar
  20. 20.
    Olofsson CS, Göpel SO, Barg S, Galvanovskis J, Ma X, Salehi A, Rorsman P, Eliasson L (2002) Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch 444:43–51CrossRefPubMedGoogle Scholar
  21. 21.
    Papa FR (2012) Endoplasmic reticulum stress, pancreatic β-cell degeneration, and diabetes. Cold Spring Harbor Perspectives in Medicine 2:1–17CrossRefGoogle Scholar
  22. 22.
    Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K et al (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791CrossRefPubMedGoogle Scholar
  23. 23.
    Pizarro-Delgado J, Braun M, Hernández-Fisac I, Martin-del-Río R, Tamarit-Rodriguez J (2010) Glucose promotion of GABA metabolism contributes to the stimulation of insulin secretion in β-cells. Biochem J 431:381–389. doi: 10.1042/BJ20100714 CrossRefPubMedGoogle Scholar
  24. 24.
    Pizarro-Delgado J, Deeney JT, Martín-del-Río R, Corkey BE, Tamarit-Rodriguez J (2015) KCl-permeabilized pancreatic islets: an experimental model to explore the messenger role of ATP in the mechanism of insulin secretion. PLoS One 10:e0140096. doi: 10.1371/journal.pone.0140096 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Porter DC, Farmaki E, Altilia S, Schools GP, West DK, Chen M, Chang BD, Puzyrev AT, Lim CU, Rokow-Kittell R, Friedhoff LT, Papavassiliou AG, Kalurupalle S, Hurteau G, Shi J, Baran PS, Gyorffy B, Wentland MP, Broude EV, Kiaris H, Roninson IB (2012) Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci U S A 109:13799–13804CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Roninson IB (2002) Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179:1–14CrossRefPubMedGoogle Scholar
  27. 27.
    Saadeh M, Ferrante TC, Kane A, Shirihai O, Corkey BE, Deeney JT (2012) Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol. PLoS One 7:e30200CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sato E, Kohno M, Nakashima T, Niwano Y (2008) Ciclopirox olamine directly scavenges hydroxyl radical. Int J Dermatol 47:15–18CrossRefPubMedGoogle Scholar
  29. 29.
    Schubert U, Schmid J, Lehmann S et al (2013) Transplantation of pancreatic islets to adrenal gland is promoted by agonists of growth-hormone-releasing hormone. Proc Natl Acad Sci U S A 110:2288–2293CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Secchiero P, Toffoli B, Melloni E, Agnoletto C, Monasta L, Zauli G (2013) The MDM2 inhibitor Nutlin-3 attenuates streptozotocin-induced diabetes mellitus and increases serum level of IL-12p40. Acta Diabetol 50:899–906CrossRefPubMedGoogle Scholar
  31. 31.
    Simcox JA, McClain DA (2013a) Iron and diabetes risk. Cell Metab 17:329–341. doi: 10.1016/j.cmet.2013.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Simcox JA, McClain DA (2013b) Iron and diabetes risk. Cell Metab 17(3):329–341CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Swaminathan S, Fonseca V, Alam M, Shah SV. S (2007) The role of iron in diabetes and its complications. Diabetes Care 30:1926–1933CrossRefPubMedGoogle Scholar
  34. 34.
    Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science (New York, NY) 303:844–848CrossRefGoogle Scholar
  35. 35.
    Wanner RM, Spielmann P, Stroka DM, Camenisch G, Camenisch I, Scheid A et al (2000) Epolones induce erythropoietin expression via hypoxia-inducible factor-1 alpha activation. Blood 96:1558–1565PubMedGoogle Scholar
  36. 36.
    Weiss RH (2003) p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell 4:425–429CrossRefPubMedGoogle Scholar
  37. 37.
    Yang J, Zhang W, Jiang W, Sun X, Han Y, Ding M et al (2009) P21cip-overexpression in the mouse beta cells leads to the improved recovery from streptozotocin-induced diabetes. PLoS One 4:e8344CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yu T, Jhun BS, Yoon Y (2011) High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal 14:425–437CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhou H, Shen T, Luo Y, Liu L, Chen W, Xu B et al (2010) The antitumor activity of the fungicide ciclopirox. Int J Cancer J Int Du Cancer 127:2467–2477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biological ChemistryMedical School, National and Kapodistrian University of AthensAthensGreece
  2. 2.Department of Pathology, Microbiology and ImmunologyUniversity of South Carolina School of MedicineColumbiaUSA
  3. 3.Department of Drug Discovery and Biomedical SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations