Skip to main content
Log in

Analysis of spontaneous activity of superficial dorsal horn neurons in vitro: neuropathy-induced changes

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The superficial dorsal horn contains large numbers of interneurons which process afferent and descending information to generate the spinal nociceptive message. Here, we set out to evaluate whether adjustments in patterns and/or temporal correlation of spontaneous discharges of these neurons are involved in the generation of central sensitization caused by peripheral nerve damage. Multielectrode arrays were used to record from discrete groups of such neurons in slices from control or nerve damaged mice. Whole-cell recordings of individual neurons were also obtained. A large proportion of neurons recorded extracellularly showed well-defined patterns of spontaneous firing. Clock-like neurons (CL) showed regular discharges at ∼6 Hz and represented 9 % of the sample in control animals. They showed a tonic-firing pattern to direct current injection and depolarized membrane potentials. Irregular fast-burst neurons (IFB) produced short-lasting high-frequency bursts (2–5 spikes at ∼100 Hz) at irregular intervals and represented 25 % of the sample. They showed bursting behavior upon direct current injection. Of the pairs of neurons recorded, 10 % showed correlated firing. Correlated pairs always included an IFB neuron. After nerve damage, the mean spontaneous firing frequency was unchanged, but the proportion of CL increased significantly (18 %) and many of these neurons appeared to acquire a novel low-threshold A-fiber input. Similarly, the percentage of IFB neurons was unaltered, but synchronous firing was increased to 22 % of the pairs studied. These changes may contribute to transform spinal processing of nociceptive inputs following peripheral nerve damage. The specific roles that these neurons may play are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve endings: part 3. Impulses set up by touch and pressure. J Physiol 61:465–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve-endings: part II. The response of a single end-organ. J Physiol 61:151–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Averbeck BB, Lee D (2004) Coding and transmission of information by neural ensembles. Trends Neurosci 27:225–230. doi:10.1016/j.tins.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  4. Bailey AL, Ribeiro-da-Silva A (2006) Transient loss of terminals from non-peptidergic nociceptive fibers in the substantia gelatinosa of spinal cord following chronic constriction injury of the sciatic nerve. Neuroscience 138:675–690

    Article  CAS  PubMed  Google Scholar 

  5. Balasubramanyan S, Stemkowski PL, Stebbing MJ, Smith PA (2006) Sciatic chronic constriction injury produces cell-type-specific changes in the electrophysiological properties of rat substantia gelatinosa neurons. J Neurophysiol 96:579–590

    Article  PubMed  Google Scholar 

  6. Bar-Gad I, Ritov Y, Vaadia E, Bergman H (2001) Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations. J Neurosci Methods 107:1–13

    Article  CAS  PubMed  Google Scholar 

  7. Bingmer M, Schiemann J, Roeper J, Schneider G (2011) Measuring burstiness and regularity in oscillatory spike trains. J Neurosci Methods 201:426–437. doi:10.1016/j.jneumeth.2011.08.013

    Article  PubMed  Google Scholar 

  8. Bracci E, Ballerini L, Nistri A (1996) Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord. J Neurosci 16:7063–7076

    CAS  PubMed  Google Scholar 

  9. Bromberg-Martin ES, Hikosaka O, Nakamura K (2010) Coding of task reward value in the dorsal raphe nucleus. J Neurosci 30:6262–6272. doi:10.1523/JNEUROSCI.0015-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451. doi:10.1038/nn1233

    Article  CAS  PubMed  Google Scholar 

  11. Cervero F, Iggo A (1980) The substantia gelatinosa of the spinal cord: a critical review. Brain 103:717–772

    Article  CAS  PubMed  Google Scholar 

  12. Cervero F, Iggo A, Ogawa H (1976) Nociceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain 2:5–24

    Article  CAS  PubMed  Google Scholar 

  13. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  14. Chapman V, Suzuki R, Dickenson AH (1998) Electrophysiological characterization of spinal neuronal response properties in anaesthetized rats after ligation of spinal nerves L5-L6. J Physiol 507(Pt 3):881–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Y, Balasubramanyan S, Lai AY, Todd KG, Smith PA (2009) Effects of sciatic nerve axotomy on excitatory synaptic transmission in rat substantia gelatinosa. J Neurophysiol 102:3203–3215. doi:10.1152/jn.00296.2009

    Article  PubMed  Google Scholar 

  16. Cirillo G, Colangelo AM, Berbenni M, Ippolito VM, De Luca C, Verdesca F, Savarese L, Alberghina L, Maggio N, Papa M (2015) Purinergic modulation of spinal neuroglial maladaptive plasticity following peripheral nerve injury. Mol Neurobiol 52:1440–1457. doi:10.1007/s12035-014-8943-y

    Article  CAS  PubMed  Google Scholar 

  17. Contreras-Hernandez E, Chavez D, Rudomin P (2015) Dynamic synchronization of ongoing neuronal activity across spinal segments regulates sensory information flow. J Physiol 593:2343–2363. doi:10.1113/jphysiol.2014.288134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corder G, Siegel A, Intondi AB, Zhang X, Zadina JE, Taylor BK (2010) A novel method to quantify histochemical changes throughout the mediolateral axis of the substantia gelatinosa after spared nerve injury: characterization with TRPV1 and substance P. J Pain 11:388–398. doi:10.1016/j.jpain.2009.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, Krashes M, Knowlton W, Velasquez T, Ren X, Ross SE, Lowell BB, Wang Y, Goulding M, Ma Q (2014) Identification of spinal circuits transmitting and gating mechanical pain. Cell 159:1417–1432. doi:10.1016/j.cell.2014.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS (2010) Decorrelated neuronal firing in cortical microcircuits. Science 327:584–587. doi:10.1126/science.1179867

    Article  CAS  PubMed  Google Scholar 

  21. Fellous JM, Tiesinga PH, Thomas PJ, Sejnowski TJ (2004) Discovering spike patterns in neuronal responses. J Neurosci 24:2989–3001. doi:10.1523/JNEUROSCI.4649-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandes EC, Luz LL, Mytakhir O, Lukoyanov NV, Szucs P, Safronov BV (2016) Diverse firing properties and Abeta-, Adelta-, and C-afferent inputs of small local circuit neurons in spinal lamina I. Pain 157:475–487. doi:10.1097/j.pain.0000000000000394

    Article  CAS  PubMed  Google Scholar 

  23. Graham BA, Brichta AM, Callister RJ (2004) In vivo responses of mouse superficial dorsal horn neurones to both current injection and peripheral cutaneous stimulation. J Physiol 561:749–763. doi:10.1113/jphysiol.2004.072645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG (2004) Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 24:4832–4839. doi:10.1523/JNEUROSCI.0300-04.2004

    Article  CAS  PubMed  Google Scholar 

  25. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167. doi:10.1016/S0166-2236(03)00034-1

    Article  CAS  PubMed  Google Scholar 

  26. Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A (2016) Correlations and neuronal population information. Annu Rev Neurosci. doi:10.1146/annurev-neuro-070815-013851

    PubMed  Google Scholar 

  27. Laird JM, Bennett GJ (1993) An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy. J Neurophysiol 69:2072–2085

    CAS  PubMed  Google Scholar 

  28. Li J, Baccei ML (2011) Pacemaker neurons within newborn spinal pain circuits. J Neurosci 31:9010–9022. doi:10.1523/JNEUROSCI.6555-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Kritzer E, Ford NC, Arbabi S, Baccei ML (2015) Connectivity of pacemaker neurons in the neonatal rat superficial dorsal horn. J Comp Neurol 523:1038–1053. doi:10.1002/cne.23706

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43

    Article  CAS  PubMed  Google Scholar 

  31. Liu XG, Sandkuhler J (1995) The effects of extrasynaptic substance P on nociceptive neurons in laminae I and II in rat lumbar spinal dorsal horn. Neuroscience 68:1207–1218

    Article  CAS  PubMed  Google Scholar 

  32. Lopez-Garcia JA, King AE (1994) Membrane properties of physiologically classified rat dorsal horn neurons in vitro: correlation with cutaneous sensory afferent input. Eur J Neurosci 6:998–1007

    Article  CAS  PubMed  Google Scholar 

  33. Lu Y, Dong H, Gao Y, Gong Y, Ren Y, Gu N, Zhou S, Xia N, Sun YY, Ji RR, Xiong L (2013) A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J Clin Invest 123:4050–4062. doi:10.1172/JCI70026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luz LL, Szucs P, Safronov BV (2014) Peripherally driven low-threshold inhibitory inputs to lamina I local-circuit and projection neurones: a new circuit for gating pain responses. J Physiol 592:1519–1534. doi:10.1113/jphysiol.2013.269472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maimon G, Assad JA (2009) Beyond Poisson: increased spike-time regularity across primate parietal cortex. Neuron 62:426–440. doi:10.1016/j.neuron.2009.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mochizuki Y, Onaga T, Shimazaki H, Shimokawa T, Tsubo Y, Kimura R, Saiki A, Sakai Y, Isomura Y, Fujisawa S, Shibata K, Hirai D, Furuta T, Kaneko T, Takahashi S, Nakazono T, Ishino S, Sakurai Y, Kitsukawa T, Lee JW, Lee H, Jung MW, Babul C, Maldonado PE, Takahashi K, Arce-McShane FI, Ross CF, Sessle BJ, Hatsopoulos NG, Brochier T, Riehle A, Chorley P, Grun S, Nishijo H, Ichihara-Takeda S, Funahashi S, Shima K, Mushiake H, Yamane Y, Tamura H, Fujita I, Inaba N, Kawano K, Kurkin S, Fukushima K, Kurata K, Taira M, Tsutsui K, Ogawa T, Komatsu H, Koida K, Toyama K, Richmond BJ, Shinomoto S (2016) Similarity in neuronal firing regimes across mammalian species. J Neurosci 36:5736–5747. doi:10.1523/JNEUROSCI.0230-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nowak LG, Bullier J (2000) Cross correlograms for neuronal spike trains. Different types of temporal correlation in neocortex, their origin and significance. In: Miller R (ed) Time and the brain, conceptual advances in brain research. Harwood Academic, Amsterdam, pp. 53–96

    Google Scholar 

  38. Palecek J, Paleckova V, Dougherty PM, Carlton SM, Willis WD (1992) Responses of spinothalamic tract cells to mechanical and thermal stimulation of skin in rats with experimental peripheral neuropathy. J Neurophysiol 67:1562–1573

    CAS  PubMed  Google Scholar 

  39. Peirs C, Williams SP, Zhao X, Walsh CE, Gedeon JY, Cagle NE, Goldring AC, Hioki H, Liu Z, Marell PS, Seal RP (2015) Dorsal horn circuits for persistent mechanical pain. Neuron 87:797–812. doi:10.1016/j.neuron.2015.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Polgar E, Hughes DI, Arham AZ, Todd AJ (2005) Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci 25:6658–6666

    Article  CAS  PubMed  Google Scholar 

  41. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687. doi:10.1162/089976604774201631

    Article  PubMed  Google Scholar 

  42. Reali C, Fossat P, Landry M, Russo RE, Nagy F (2011) Intrinsic membrane properties of spinal dorsal horn neurones modulate nociceptive information processing in vivo. J Physiol 589:2733–2743. doi:10.1113/jphysiol.2011.207712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD (2010) The asynchronous state in cortical circuits. Science 327:587–590. doi:10.1126/science.1179850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rivera-Arconada I, Lopez-Garcia JA (2015) Characterisation of rebound depolarisation in mice deep dorsal horn neurons in vitro. Pflugers Arch 467:1985–1996. doi:10.1007/s00424-014-1623-y

    Article  CAS  PubMed  Google Scholar 

  45. Rivera-Arconada I, Lopez-Garcia JA (2010) Changes in membrane excitability and potassium currents in sensitized dorsal horn neurons of mice pups. J Neurosci 30:5376–5383. doi:10.1523/JNEUROSCI.4359-09.2010

    Article  CAS  PubMed  Google Scholar 

  46. Rivera-Arconada I, Benedet T, Roza C, Torres B, Barrio J, Krzyzanowska A, Avendano C, Mellstrom B, Lopez-Garcia JA, Naranjo JR (2010) DREAM regulates BDNF-dependent spinal sensitization. Mol Pain 6. doi:10.1186/1744-8069-6-95

  47. Rojas-Piloni G, Dickenson AH, Condes-Lara M (2007) Superficial dorsal horn neurons with double spike activity in the rat. Neurosci Lett 419:147–152

    Article  CAS  PubMed  Google Scholar 

  48. Ruscheweyh R, Ikeda H, Heinke B, Sandkuhler J (2004) Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro. J Physiol 555:527–543. doi:10.1113/jphysiol.2003.054049

    Article  CAS  PubMed  Google Scholar 

  49. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550. doi:10.1038/35086012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758. doi:10.1152/physrev.00025.2008

    Article  PubMed  Google Scholar 

  51. Sandkuhler J, Eblen-Zajjur AA (1994) Identification and characterization of rhythmic nociceptive and non-nociceptive spinal dorsal horn neurons in the rat. Neuroscience 61:991–1006

    Article  CAS  PubMed  Google Scholar 

  52. Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, Zaghloul KA, Schneider G, Liss B, Roeper J (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 15:1272–1280. doi:10.1038/nn.3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schoffnegger D, Heinke B, Sommer C, Sandkuhler J (2006) Physiological properties of spinal lamina II GABAergic neurons in mice following peripheral nerve injury. J Physiol 577:869–878. doi:10.1113/jphysiol.2006.118034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seagrove LC, Suzuki R, Dickenson AH (2004) Electrophysiological characterisations of rat lamina I dorsal horn neurones and the involvement of excitatory amino acid receptors. Pain 108:76–87. doi:10.1016/j.pain.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  55. Shields SD, Eckert WA 3rd, Basbaum AI (2003) Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J Pain 4:465–470

    Article  PubMed  Google Scholar 

  56. Spike RC, Puskar Z, Andrew D, Todd AJ (2003) A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 18:2433–2448

    Article  CAS  PubMed  Google Scholar 

  57. Takaishi K, Eisele JH Jr, Carstens E (1996) Behavioral and electrophysiological assessment of hyperalgesia and changes in dorsal horn responses following partial sciatic nerve ligation in rats. Pain 66:297–306

    Article  CAS  PubMed  Google Scholar 

  58. Tiesinga P, Fellous JM, Sejnowski TJ (2008) Regulation of spike timing in visual cortical circuits. Nat Rev Neurosci 9:97–107. doi:10.1038/nrn2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836. doi:10.1038/nrn2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Truini A, Garcia-Larrea L, Cruccu G (2013) Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms. Nat Rev Neurol 9:572–582. doi:10.1038/nrneurol.2013.180

    Article  CAS  PubMed  Google Scholar 

  61. Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227

    Article  CAS  PubMed  Google Scholar 

  62. Willis WD Jr (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124:395–421

    Article  CAS  PubMed  Google Scholar 

  63. XF W, Liu WT, Liu YP, Huang ZJ, Zhang YK, Song XJ (2011) Reopening of ATP-sensitive potassium channels reduces neuropathic pain and regulates astroglial gap junctions in the rat spinal cord. Pain 152:2605–2615. doi:10.1016/j.pain.2011.08.003

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Government (Ministerio de Economía y Competitividad, MINECO; SAF 2016-77585-R) and the Universidad de Alcalá (CCG2015/BIO023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. López-García.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roza, C., Mazo, I., Rivera-Arconada, I. et al. Analysis of spontaneous activity of superficial dorsal horn neurons in vitro: neuropathy-induced changes. Pflugers Arch - Eur J Physiol 468, 2017–2030 (2016). https://doi.org/10.1007/s00424-016-1886-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1886-6

Keywords

Navigation