Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors

  • E. Wium
  • A. F. DulhuntyEmail author
  • N. A. Beard
Muscle physiology


Triadin isoforms, splice variants of one gene, maintain healthy Ca2+ homeostasis in skeletal muscle by subserving several functions including an influence on Ca2+ release through the ligand-gated ryanodine receptor (RyR1) ion channels. The predominant triadin isoform in skeletal muscle, Trisk 95, activates RyR1 in vitro via binding to previously unidentified amino acids between residues 200 and 232. Here, we identify three amino acids that influence Trisk 95 binding to RyR1 and ion channel activation, using peptides encompassing residues 200–232. Selective alanine substitutions show that K218, K220, and K224 together facilitate normal Trisk 95 binding to RyR1 and channel activation. Neither RyR1 binding nor activation are altered by alanine substitution of K220 alone or of K218 and K224. Therefore K218, K220, and K224 contribute to a robust binding and activation site that is disrupted only when the charge on all three residues is neutralized. We suggest that charged pair interactions between acidic RyR1 residues D4878, D4907, and E4908 and Trisk 95 residues K218, K220, and K224 facilitate Trisk 95 binding to RyR1 and channel activation. Since K218, K220, and K224 are also required for CSQ binding to RyRs (Kobayashi et al. 17, J Biol Chem 275, 17639–17646), the results suggest that Trisk 95 may not simultaneously bind to RyR1 and CSQ, contrary to the widely held belief that triadin monomers form a quaternary complex with junctin, CSQ and RyR1. Therefore, the in vivo role of triadin monomers in modulating RyR1 activity is likely unrelated to CSQ.


Triadin Ryanodine receptor calcium release channels Skeletal muscle Calcium signaling 



We thank S Pace and J Stivala for the preparation of SR vesicles and purification of RyR1. This work was supported by the Australian Research Council (DP1094219 to A.F.D. and N. A. B.), a NHMRC Career Development Award (APP1003985 to NAB) and an Australian Postgraduate Award PhD scholarship to E.W.).

Compliance with ethical standards

Author contributions

EW: designed research, performed research, undertook analysis, contributed to writing of manuscript.

AD: designed research, undertook analysis, contributed to writing of manuscript.

NB: designed research, undertook analysis, contributed to writing of manuscript.


  1. 1.
    Beard NA, Casarotto MG, Wei L, Varsanyi M, Laver DR, Dulhunty AF (2005) Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation. Biophys J 88:3444–3454. doi: 10.1529/biophysj.104.051441 PMC1305491 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Boncompagni S, Thomas M, Lopez JR, Allen PD, Yuan Q, Kranias EG, Franzini-Armstrong C, Perez CF (2012) Triadin/junctin double null mouse reveals a differential role for triadin and junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS One 7:e39962. doi: 10.1371/journal.pone.0039962 PMC3388061 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen W et al. (2014) The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2 + −triggered arrhythmias. Nat Med 20:184–192. doi: 10.1038/nm.3440 PMC4269524 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chu A, Dixon MC, Saito A, Seiler S, Fleischer S (1988) Isolation of sarcoplasmic reticulum fractions referable to longitudinal tubules and junctional terminal cisternae from rabbit skeletal muscle. Methods Enzymol 157:36–46CrossRefPubMedGoogle Scholar
  5. 5.
    Copello JA, Barg S, Onoue H, Fleischer S (1997) Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys J 73:141–156. doi: 10.1016/S0006-3495(97)78055-X PMC1180916 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eltit JM, Feng W, Lopez JR, Padilla IT, Pessah IN, Molinski TF, Fruen BR, Allen PD, Perez CF (2010) Ablation of skeletal muscle triadin impairs FKBP12/RyR1 channel interactions essential for maintaining resting cytoplasmic Ca2 +. J Biol Chem 285:38453–38462. doi: 10.1074/jbc.M110.164525 PMC2992278 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Eltit JM, Szpyt J, Li H, Allen PD, Perez CF (2011) Reduced gain of excitation-contraction coupling in triadin-null myotubes is mediated by the disruption of FKBP12/RyR1 interaction. Cell Calcium 49:128–135. doi: 10.1016/j.ceca.2011.01.005 PMC3052628 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fourest-Lieuvin A, Rendu J, Osseni A, Pernet-Gallay K, Rossi D, Oddoux S, Brocard J, Sorrentino V, Marty I, Faure J (2012) Role of triadin in the organization of reticulum membrane at the muscle triad. J Cell Sci 125:3443–3453. doi: 10.1242/jcs.100958 CrossRefPubMedGoogle Scholar
  9. 9.
    Froemming GR, Murray BE, Ohlendieck K (1999) Self-aggregation of triadin in the sarcoplasmic reticulum of rabbit skeletal muscle. Biochim Biophys Acta 1418:197–205CrossRefPubMedGoogle Scholar
  10. 10.
    Goonasekera SA, Beard NA, Groom L, Kimura T, Lyfenko AD, Rosenfeld A, Marty I, Dulhunty AF, Dirksen RT (2007) Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. J Gen Physiol 130:365–378. doi: 10.1085/jgp.200709790 PMC2151650 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Groh S, Marty I, Ottolia M, Prestipino G, Chapel A, Villaz M, Ronjat M (1999) Functional interaction of the cytoplasmic domain of triadin with the skeletal ryanodine receptor. J Biol Chem 274:12278–12283CrossRefPubMedGoogle Scholar
  12. 12.
    Guo W, Campbell KP (1995) Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J Biol Chem 270:9027–9030CrossRefPubMedGoogle Scholar
  13. 13.
    Guo W, Jorgensen AO, Jones LR, Campbell KP (1996) Biochemical characterization and molecular cloning of cardiac triadin. J Biol Chem 271:458–465CrossRefPubMedGoogle Scholar
  14. 14.
    Gyorke I, Hester N, Jones LR, Gyorke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86:2121–2128. doi: 10.1016/S0006-3495(04)74271-X PMC1304063 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Knudson CM, Stang KK, Moomaw CR, Slaughter CA, Campbell KP (1993) Primary structure and topological analysis of a skeletal muscle-specific junctional sarcoplasmic reticulum glycoprotein (triadin). J Biol Chem 268:12646–12654PubMedGoogle Scholar
  16. 16.
    Kobayashi YM, Jones LR (1999) Identification of triadin 1 as the predominant triadin isoform expressed in mammalian myocardium. J Biol Chem 274:28660–28668CrossRefPubMedGoogle Scholar
  17. 17.
    Kobayashi YM, Alseikhan BA, Jones LR (2000) Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction J Biol Chem 275:17639–17646. doi: 10.1074/jbc.M002091200 PubMedGoogle Scholar
  18. 18.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  19. 19.
    Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319. doi: 10.1038/331315a0 CrossRefPubMedGoogle Scholar
  20. 20.
    Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR, Dulhunty AF (1995) Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J Membr Biol 147:7–22CrossRefPubMedGoogle Scholar
  21. 21.
    Lee HG, Kang H, Kim DH, Park WJ (2001) Interaction of HRC (histidine-rich Ca(2+)-binding protein) and triadin in the lumen of sarcoplasmic reticulum. J Biol Chem 276:39533–39538. doi: 10.1074/jbc.M010664200 CrossRefPubMedGoogle Scholar
  22. 22.
    Lee JM, Rho SH, Shin DW, Cho C, Park WJ, Eom SH, Ma J, Kim DH (2004) Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. J Biol Chem 279:6994–7000. doi: 10.1074/jbc.M312446200 CrossRefPubMedGoogle Scholar
  23. 23.
    Lee KW et al. (2012) Role of junctin protein interactions in cellular dynamics of calsequestrin polymer upon calcium perturbation. J Biol Chem 287:1679–1687. doi: 10.1074/jbc.M111.254045 PMC3265851 CrossRefPubMedGoogle Scholar
  24. 24.
    Marengo JJ, Hidalgo C, Bull R (1998) Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J 74:1263–1277. doi: 10.1016/S0006-3495(98)77840-3 PMC1299474 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marty I, Thevenon D, Scotto C, Groh S, Sainnier S, Robert M, Grunwald D, Villaz M (2000) Cloning and characterization of a new isoform of skeletal muscle triadin. J Biol Chem 275:8206–8212CrossRefPubMedGoogle Scholar
  26. 26.
    Marty I, Faure J, Fourest-Lieuvin A, Vassilopoulos S, Oddoux S, Brocard J (2009) Triadin: what possible function 20 years later? J Physiol 587:3117–3121. doi: 10.1113/jphysiol.2009.171892 PMC2727022 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marty I (2015) Triadin regulation of the ryanodine receptor complex. J Physiol 593:3261–3266. doi: 10.1113/jphysiol.2014.281147 PMC4553051 CrossRefPubMedGoogle Scholar
  28. 28.
    Oddoux S et al. (2009) Triadin deletion induces impaired skeletal muscle function. J Biol Chem 284:34918–34929. doi: 10.1074/jbc.M109.022442 PMC2787354 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ohkura M, Furukawa K, Fujimori H, Kuruma A, Kawano S, Hiraoka M, Kuniyasu A, Nakayama H, Ohizumi Y (1998) Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin. Biochemistry 37:12987–12993. doi: 10.1021/bi972803d CrossRefPubMedGoogle Scholar
  30. 30.
    Rani S, Park CS, Sreenivasaiah PK, do Kim H (2016) Characterization of Ca(2+)-dependent protein-protein interactions within the Ca(2+) release units of cardiac sarcoplasmic reticulum. Mol Cells 39:149–155. doi: 10.14348/molcells.2016.2284 PMC4757803CrossRefPubMedGoogle Scholar
  31. 31.
    Rossi D, Bencini C, Maritati M, Benini F, Lorenzini S, Pierantozzi E, Scarcella AM, Paolini C, Protasi F, Sorrentino V (2014) Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum. Biochem J 458:407–417. doi: 10.1042/BJ20130719 CrossRefPubMedGoogle Scholar
  32. 32.
    Sacchetto R, Damiani E, Turcato F, Nori A, Margreth A (2001) Ca(2+)-dependent interaction of triadin with histidine-rich Ca(2+)-binding protein carboxyl-terminal region. Biochem Biophys Res Commun 289:1125–1134. doi: 10.1006/bbrc.2001.6126 CrossRefPubMedGoogle Scholar
  33. 33.
    Saito A, Seiler S, Chu A, Fleischer S (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol 99:875–885 PMC2113387CrossRefPubMedGoogle Scholar
  34. 34.
    Shin DW, Ma J, Kim DH (2000) The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin. FEBS Lett 486:178–182CrossRefPubMedGoogle Scholar
  35. 35.
    Terentyev D, Cala SE, Houle TD, Viatchenko-Karpinski S, Gyorke I, Terentyeva R, Williams SC, Gyorke S (2005) Triadin overexpression stimulates excitation-contraction coupling and increases predisposition to cellular arrhythmia in cardiac myocytes. Circ Res 96:651–658. doi: 10.1161/01.RES.0000160609.98948.25 CrossRefPubMedGoogle Scholar
  36. 36.
    Thevenon D, Smida-Rezgui S, Chevessier F, Groh S, Henry-Berger J, Beatriz Romero N, Villaz M, DeWaard M, Marty I (2003) Human skeletal muscle triadin: gene organization and cloning of the major isoform, Trisk 51. Biochem Biophys Res Commun 303:669–675CrossRefPubMedGoogle Scholar
  37. 37.
    Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 24:145–149PubMedGoogle Scholar
  38. 38.
    Vassilopoulos S, Thevenon D, Rezgui SS, Brocard J, Chapel A, Lacampagne A, Lunardi J, Dewaard M, Marty I (2005) Triadins are not triad-specific proteins: two new skeletal muscle triadins possibly involved in the architecture of sarcoplasmic reticulum. J Biol Chem 280:28601–28609. doi: 10.1074/jbc.M501484200 PMC2739232 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vassilopoulos S, Brocard J, Garcia L, Marty I, Bouron A (2007) Retrograde regulation of store-operated calcium channels by the ryanodine receptor-associated protein triadin 95 in rat skeletal myotubes. Cell Calcium 41:179–185. doi: 10.1016/j.ceca.2006.06.003 CrossRefPubMedGoogle Scholar
  40. 40.
    Vassilopoulos S, Oddoux S, Groh S, Cacheux M, Faure J, Brocard J, Campbell KP, Marty I (2010) Caveolin 3 is associated with the calcium release complex and is modified via in vivo triadin modification. Biochemistry 49:6130–6135. doi: 10.1021/bi100796v PMC2907096 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang Y, Li X, Duan H, Fulton TR, Eu JP, Meissner G (2009) Altered stored calcium release in skeletal myotubes deficient of triadin and junctin. Cell Calcium 45:29–37. doi: 10.1016/j.ceca.2008.05.006 PMC2626147 CrossRefPubMedGoogle Scholar
  42. 42.
    Wei L, Gallant EM, Dulhunty AF, Beard NA (2009) Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. Int J Biochem Cell Biol 41:2214–2224. doi: 10.1016/j.biocel.2009.04.017 PMC2777989 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wium E, Dulhunty AF, Beard NA (2012) A skeletal muscle ryanodine receptor interaction domain in triadin. PLoS One 7:e43817. doi: 10.1371/journal.pone.0043817 PMC3427183 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yan Z et al. (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:50–55. doi: 10.1038/nature14063 PMC4338550 CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane J Biol Chem 272:23389–23397PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
  2. 2.John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
  3. 3.Health Research Institute, Faculty of Education Science and MathematicsUniversity of CanberraBruceAustralia

Personalised recommendations