Regulation by L channels of Ca2+-evoked secretory responses in ouabain-treated chromaffin cells

Abstract

It is known that the sustained depolarisation of adrenal medullary bovine chromaffin cells (BCCs) with high K+ concentrations produces an initial sharp catecholamine release that subsequently fades off in spite depolarisation persists. Here, we have recreated a sustained depolarisation condition of BCCs by treating them with the Na+/K+ ATPase blocker ouabain; in doing so, we searched experimental conditions that permitted the development of a sustained long-term catecholamine release response that could be relevant during prolonged stress. BCCs were perifused with nominal 0Ca2+ solution, and secretion responses were elicited by intermittent application of short 2Ca2+ pulses (Krebs-HEPES containing 2 mM Ca2+). These pulses elicited a biphasic secretory pattern with an initial 30-min period with secretory responses of increasing amplitude and a second 30-min period with steady-state, non-inactivating responses. The initial phase was not due to gradual depolarisation neither to gradual increases of the cytosolic calcium transients ([Ca2+]c) elicited by 2Ca2+ pulses in BBCs exposed to ouabain; both parameters increased soon after ouabain addition. Νifedipine blocked these responses, and FPL64176 potentiated them, suggesting that they were triggered by Ca2+ entry through non-inactivating L-type calcium channels. This was corroborated by nifedipine-evoked blockade of the L-type Ca2+ channel current and the [Ca2+]c transients elicited by 2Ca2+ pulses. Furthermore, the plasmalemmal Na+/Ca2+ exchanger (NCX) blocker SEA0400 caused a mild inhibition followed by a large rebound increase of the steady-state secretory responses. We conclude that these two phases of secretion are mostly contributed by Ca2+ entry through L calcium channels, with a minor contribution of Ca2+ entry through the reverse mode of the NCX.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Albillos A, Carbone E, Gandia L, Garcia AG, Pollo A (1996) Opioid inhibition of Ca2+ channel subtypes in bovine chromaffin cells: selectivity of action and voltage-dependence. Eur J Neurosci 8:1561–1570

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Albillos A, Garcia AG, Gandia L (1993) omega-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett 336:259–262

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Albillos A, Garcia AG, Olivera B, Gandia L (1996) Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations. Pflugers Arch 432:1030–1038

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, Garcia AG, Garcia-Sancho J, Montero M, Alvarez J (1999) Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144:241–254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Arnáiz-Cot JJ, de Diego AM, Hernández-Guijo JM, Gandía L, García AG (2008) A two-step model for acetylcholine control of exocytosis via nicotinic receptors. Biochem Biophys Res Commun 365:413–419

    Article  PubMed  Google Scholar 

  6. 6.

    Aunis D, Garcia AG (1981) Correlation between catecholamine secretion from bovine isolated chromaffin cells and [3H]-ouabain binding to plasma membranes. Br J Pharmacol 72:31–40

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Baker PF, Rink TJ (1975) Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J Physiol 253:593–620

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bauer N, Muller-Ehmsen J, Kramer U, Hambarchian N, Zobel C, Schwinger RH, Neu H, Kirch U, Grunbaum EG, Schoner W (2005) Ouabain-like compound changes rapidly on physical exercise in humans and dogs: effects of beta-blockade and angiotensin-converting enzyme inhibition. Hypertension 45:1024–1028

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Bittner MA, Holz RW (1992) Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J Biol Chem 267:16219–16225

    CAS  PubMed  Google Scholar 

  10. 10.

    Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Phys 264:C1367–C1387

    CAS  Google Scholar 

  11. 11.

    Borges R, Sala F, Garcia AG (1986) Continuous monitoring of catecholamine release from perfused cat adrenals. J Neurosci Methods 16:289–300

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Chan SA, Polo-Parada L, Smith C (2005) Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices. Arch Biochem Biophys 435:65–73

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    de Diego AM, Tapia L, Alvarez RM, Mosquera M, Cortes L, Lopez I, Gutierrez LM, Gandia L, Garcia AG (2008) A low nicotine concentration augments vesicle motion and exocytosis triggered by K(+) depolarisation of chromaffin cells. Eur J Pharmacol 598:81–86

    Article  PubMed  Google Scholar 

  14. 14.

    Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:451–474

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Douglas WW, Poisner AM (1962) On the mode of action of acetylcholine in evoking adrenal medullary secretion: increased uptake of calcium during the secretory response. J Physiol 162:385–392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Douglas WW, Rubin RP (1961) Mechanism of nicotinic action at the adrenal medulla: calcium as a link in stimulus-secretion coupling. Nature 192:1087–1089

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Douglas WW, Rubin RP (1961) The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol Paris 159:40–57

    CAS  Article  Google Scholar 

  18. 18.

    Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol 331:577–597

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331:599–635

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gandia L, Albillos A, Garcia AG (1993) Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem Biophys Res Commun 194:671–676

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Gandia L, Garcia AG, Morad M (1993) ATP modulation of calcium channels in chromaffin cells. J Physiol 470:55–72

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Gandia L, Lara B, Imperial JS, Villarroya M, Albillos A, Maroto R, Garcia AG, Olivera BM (1997) Analogies and differences between omega-conotoxins MVIIC and MVIID: binding sites and functions in bovine chromaffin cells. Pflugers Arch 435:55–64

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131

    Article  PubMed  Google Scholar 

  24. 24.

    Garcia AG, Hernandez M, Horga JF, Sanchez-Garcia P (1980) On the release of catecholamines and dopamine-beta-hydroxylase evoked by ouabain in the perfused cat adrenal gland. Br J Pharmacol 68:571–583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gil A, Viniegra S, Gutierrez LM (2001) Temperature and PMA affect different phases of exocytosis in bovine chromaffin cells. Eur J Neurosci 13:1380–1386

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Haynes CL, Siff LN, Wightman RM (2007) Temperature-dependent differences between readily releasable and reserve pool vesicles in chromaffin cells. Biochim Biophys Acta 1773:728–735

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hernández-Guijo JM, Carabelli V, Gandía L, García AG, Carbone E (1999) Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. Eur J Neurosci 11:3574–3584

    Article  PubMed  Google Scholar 

  29. 29.

    Hernandez-Guijo JM, Gandia L, de Pascual R, Garcia AG (1997) Differential effects of the neuroprotectant lubeluzole on bovine and mouse chromaffin cell calcium channel subtypes. Br J Pharmacol 122:275–285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hernández-Guijo JM, Maneu-Flores VE, Ruiz-Nuno A, Villarroya M, García AG, Gandía L (2001) Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria. J Neurosci 21:2553–2560

    PubMed  Google Scholar 

  31. 31.

    Inagami T, Tamura M (1988) Purification and characterization of specific endogenous ouabainlike substance from bovine adrenal. Am J Med Sci 295:400–405

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kao LS, Westhead EW (1984) Temperature dependence of catecholamine secretion from cultured bovine chromaffin cells. J Neurochem 43:590–592

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Lara B, Gandia L, Martinez-Sierra R, Torres A, Garcia AG (1998) Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells. Pflugers Arch 435:472–478

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Li S, Eim C, Kirch U, Lang RE, Schoner W (1998) Bovine adrenals and hypothalamus are a major source of proscillaridin A- and ouabain-immunoreactivities. Life Sci 62:1023–1033

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Livett BG (1984) Adrenal medullary chromaffin cells in vitro. Physiol Rev 64:1103–1161

    CAS  PubMed  Google Scholar 

  36. 36.

    Lopez MG, Albillos A, de la Fuente MT, Borges R, Gandia L, Carbone E, Garcia AG, Artalejo AR (1994) Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflugers Arch 427:348–354

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Mahapatra S, Calorio C, Vandael DH, Marcantoni A, Carabelli V, Carbone E (2012) Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 51:321–330

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y, Sakaue M, Takahashi K, Takahashi T, Suzuki T, Ota T, Hamano-Takahashi A, Onishi M, Tanaka Y, Kameo K, Baba A (2001) SEA0400, a novel and selective inhibitor of the Na + −Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298:249–256

    CAS  PubMed  Google Scholar 

  39. 39.

    McKechnie K, Killingback PG, Naya I, Ò Conner SE, Smith GW, Wattam DG, Wells E, Whitehead YM, Williams GE (1989) Calcium channel activator properties in a novel non-dihydropyridine, FPL 64176. Br J Pharmacol 96:673

    Google Scholar 

  40. 40.

    Milla J, Montesinos MS, Machado JD, Borges R, Alonso E, Moreno-Ortega AJ, Cano-Abad MF, Garcia AG, Ruiz-Nuno A (2011) Ouabain enhances exocytosis through the regulation of calcium handling by the endoplasmic reticulum of chromaffin cells. Cell Calcium 50:332–342

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Moro MA, López MG, Gandía L, Michelena P, García AG (1990) Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. Anal Biochem 185:243–248

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Nicholls MG, Lewis LK, Yandle TG, Lord G, McKinnon W, Hilton PJ (2009) Ouabain, a circulating hormone secreted by the adrenals, is pivotal in cardiovascular disease. Fact or fantasy? J Hypertens 27:3–8

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu Rev Biochem 63:823–867

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Orozco C, Garcia-de-Diego AM, Arias E, Hernandez-Guijo JM, Garcia AG, Villarroya M, Lopez MG (2006) Depolarization preconditioning produces cytoprotection against veratridine-induced chromaffin cell death. Eur J Pharmacol 553:28–38

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Padín JF, Fernández-Morales JC, Olivares R, Vestring S, Arranz-Tagarro JA, Calvo-Gallardo E, de Pascual R, Gandía L, Garcia AG (2013) Plasmalemmal sodium-calcium exchanger shapes the calcium and exocytotic signals of chromaffin cells at physiological temperature. Am J Physiol Cell Physiol 305:C160–C172

    Article  PubMed  Google Scholar 

  47. 47.

    Park YB, Herrington J, Babcock DF, Hille B (1996) Ca2+ clearance mechanisms in isolated rat adrenal chromaffin cells. J Physiol 492(Pt 2):329–346

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Pintado AJ, Herrero CJ, Garcia AG, Montiel C (2000) The novel Na(+)/Ca(2+) exchange inhibitor KB-R7943 also blocks native and expressed neuronal nicotinic receptors. Br J Pharmacol 130:1893–1902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Rosa JM, de Diego AM, Gandia L, Garcia AG (2007) L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells. Biochem Biophys Res Commun 357:834–839

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Rosa JM, Gandia L, Garcia AG (2009) Inhibition of N and PQ calcium channels by calcium entry through L channels in chromaffin cells. Pflugers Arch 458:795–807

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Rosa JM, Nanclares C, Orozco A, Colmena I, de Pascual R, Garcia AG, Gandia L (2012) Regulation by L-type calcium channels of endocytosis: an overview. J Mol Neurosci 48:360–367

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Schneider R, Wray V, Nimtz M, Lehmann WD, Kirch U, Antolovic R, Schoner W (1998) Bovine adrenals contain, in addition to ouabain, a second inhibitor of the sodium pump. J Biol Chem 273:784–792

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448:347–362

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16:343–353

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Villarroya M, De la Fuente MT, Lopez MG, Gandia L, Garcia AG (1997) Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. Eur J Pharmacol 320:249–257

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Villarroya M, Olivares R, Ruiz A, Cano-Abad MF, de Pascual R, Lomax RB, Lopez MG, Mayorgas I, Gandia L, Garcia AG (1999) Voltage inactivation of Ca2+ entry and secretion associated with N- and P/Q-type but not L-type Ca2+ channels of bovine chromaffin cells. J Physiol 516(Pt 2):421–432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    von Ruden L, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065

    Article  Google Scholar 

  59. 59.

    Walker A, Glavinovic MI, Trifaro J (1996) Temperature dependence of release of vesicular content in bovine chromaffin cells. Pflugers Arch 432:885–892

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Watano T, Kimura J, Morita T, Nakanishi H (1996) A novel antagonist, no. 7943, of the Na+/Ca2+ exchange current in Guinea-pig cardiac ventricular cells. Br J Pharmacol 119:555–563

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by a grant from MINECO (SAF 2013-44108-P). Also by CABYCIC, UAM/Bioiberica, Spain. We thank the continued support of Fundación Teófilo Hernando, Madrid, Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio G. García.

Additional information

Ricardo De Pascual and Inés Colmena are equal contributors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Pascual, R., Colmena, I., Ruiz-Pascual, L. et al. Regulation by L channels of Ca2+-evoked secretory responses in ouabain-treated chromaffin cells. Pflugers Arch - Eur J Physiol 468, 1779–1792 (2016). https://doi.org/10.1007/s00424-016-1866-x

Download citation

Keywords

  • Ouabain
  • Chromaffin cell
  • L-type Ca2+ channels
  • N-type Ca2+ channels
  • P/Q-type Ca2+ channels
  • NCX
  • Catecholamine release
  • Amperometry