Skip to main content
Log in

Inhibition of TRPV1 channels enables long-term potentiation in the entorhinal cortex

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The transient receptor potential vanilloid 1 (TRPV1) channel is a non-selective cation channel that is mainly found in nociceptive neurons of the peripheral nervous system; however, these channels have also been located within the CNS, including the entorhinal cortex. Whole-cell patch-clamp recordings of principal entorhinal cortex (EC) layers II/III neurons revealed that evoked inhibitory postsynaptic currents were depressed by application of the TRPV1 agonist capsaicin (CAP), accompanied by a change in the pair-pulse ratio (PPR). In addition, recordings of miniature inhibitory postsynaptic currents (mIPSCs) revealed that inter-event intervals but not amplitude were decreased in wild-type (WT) after application of CAP. This suggests that TRPV1 channels are functional in the entorhinal cortex and are located on inhibitory neurons with their axonal arborization within layers II/III. In order to study TRPV1 channels and their involvement in long-term potentiation (LTP) induction in a more intact circuit, extracellular field potential recordings were performed in EC layers II/III. It was found that activated TRPV1 channels preclude induction of long-term potentiation. In sharp contrast, clear LTP was observed when antagonizing TRPV1 channels or recording from TRPV1 knock-out mice. Thus, these results suggests that signaling through activating inhibitory presynaptic TRPV1 channels represents a novel mechanism by which a shift in feed-forward inhibition of layers II/III cortical principal neurons prompt changes in synaptic strength and thereby contribute to a change of information storage within the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bear F, Kirkwood A (1993) Neocortical long-term potentiation. Curr Biol 3:197–202

    CAS  Google Scholar 

  2. Bennion D, Jensen T, Walther C, Hamblin J, Wallmann A, Couch J, Blickenstaff J, Castle M, Dean L, Beckstead S, Merrill C, Muir C, St Pierre T, Williams B, Daniel S, Edwards JG (2011) Transient receptor potential vanilloid 1 agonists modulate hippocampal CA1 LTP via the GABAergic system. Neuropharmacology 61:730–738. doi:10.1016/j.neuropharm.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  3. Brown TE, Chirila AM, Schrank BR, Kauer JA (2013) Loss of interneuron LTD and attenuated pyramidal cell LTP in Trpv1 and Trpv3 KO mice. Hippocampus 23:662–671. doi:10.1002/hipo.22125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O’Donnell D, Nicoll RA, Shah NM, Julius D, Basbaum AI (2011) Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31:5067–5077. doi:10.1523/JNEUROSCI.6451-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chávez AE, Chiu CQ, Castillo PE (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 13:1511–1518. doi:10.1038/nn.2684

    Article  PubMed  PubMed Central  Google Scholar 

  6. DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19. doi:10.1016/S0891-0618(97)10013-8

    Article  CAS  PubMed  Google Scholar 

  7. Doyle MW, Bailey TW, Jin Y-H, Andresen MC (2002) Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci 22:8222–8229

    CAS  PubMed  Google Scholar 

  8. Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA (2008) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Neuron 57:746–759. doi:10.1016/j.neuron.2007.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13:1519–1525. doi:10.1038/nn.2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaneko Y, Szallasi A (2014) Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 171:2474–2507. doi:10.1111/bph.12414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kauer JA, Gibson HE (2009) Hot flash: TRPV channels in the brain. Trends Neurosci 32:215–224. doi:10.1016/j.tins.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  12. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  CAS  PubMed  Google Scholar 

  13. Kirkwood A, Bear MF (1994) Hebbian synapses in visual cortex. J Neurosci 14:1634–1645

    CAS  PubMed  Google Scholar 

  14. Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF (1993) Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260:1518–1521

    Article  CAS  PubMed  Google Scholar 

  15. Li H-B, Mao R-R, Zhang J-C, Yang Y, Cao J, Xu L (2008) Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol Psychiatry 64:286–292. doi:10.1016/j.biopsych.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  16. Maione S, Cristino L, Migliozzi AL, Georgiou AL, Starowicz K, Salt TE, Di Marzo V (2009) TRPV1 channels control synaptic plasticity in the developing superior colliculus. J Physiol 587:2521–2535. doi:10.1113/jphysiol.2009.171900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21. doi:10.1016/j.neuron.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  18. Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285:1870–1874

    Article  CAS  PubMed  Google Scholar 

  19. Marinelli S, Vaughan CW, Christie MJ, Connor M (2002) Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J Physiol 543:531–540. doi:10.1113/jphysiol.2002.022863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807. doi:10.1038/nrn1519

    Article  CAS  PubMed  Google Scholar 

  21. Marsch R, Foeller E, Rammes G, Bunck M, Kössl M, Holsboer F, Zieglgänsberger W, Landgraf R, Lutz B, Wotjak CT (2007) Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci 27:832–839. doi:10.1523/JNEUROSCI.3303-06.2007

    Article  CAS  PubMed  Google Scholar 

  22. Monaghan D, Cotman W (1985) Distribution of N-methyl-D-aspartate-sensitive binding sites in rat brain. J Neurosci 5:2909–2919

    CAS  PubMed  Google Scholar 

  23. Motter AL, Ahern GP (2008) TRPV1-null mice are protected from diet-induced obesity. FEBS Lett 582:2257–2262. doi:10.1016/j.febslet.2008.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Musella A, De Chiara V, Rossi S, Prosperetti C, Bernardi G, Maccarrone M, Centonze D (2009) TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci 40:89–97. doi:10.1016/j.mcn.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  25. Peters JH, McDougall SJ, Fawley JA, Smith SM, Andresen MC (2010) Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65:657–669. doi:10.1016/j.neuron.2010.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riera CE, Huising MO, Follett P, Leblanc M, Halloran J, Van Andel R, de Magalhaes Filho CD, Merkwirth C, Dillin A (2014) TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157:1023–1036. doi:10.1016/j.cell.2014.03.051

    Article  CAS  PubMed  Google Scholar 

  27. Sasamura T, Sasaki M (1998) Glutamatergic terminals., pp 2045–2048

    Google Scholar 

  28. Squire LR, Stark CEL, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306. doi:10.1146/annurev.neuro.27.070203.144130

    Article  CAS  PubMed  Google Scholar 

  29. Yang K, Kumamoto E, Furue H, Yoshimura M (1998) Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 255:135–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Lundbeck Foundation and the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tue G. Banke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banke, T.G. Inhibition of TRPV1 channels enables long-term potentiation in the entorhinal cortex. Pflugers Arch - Eur J Physiol 468, 717–726 (2016). https://doi.org/10.1007/s00424-015-1775-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1775-4

Keywords

Navigation