Skip to main content

Advertisement

Log in

No apparent role for T-type Ca2+ channels in renal autoregulation

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully elucidated due to lack of selective pharmacological inhibitors. The role of T- and L-type calcium channels in the response to acute increases in RPP in T-type channel knockout mice (CaV3.1) and normo- and hypertensive rats was examined. Changes in afferent arteriolar diameter in the kidneys from wild-type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 μM) and nifedipine (1 μM). In contrast to the results from previous pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels significantly attenuated renal autoregulation in both strains. These findings are supported by in vivo studies where blockade of T-type channels had no effect on changes in the renal vascular resistance after acute increases in RPP in normo- and hypertensive rats. These findings show that genetic deletion of T-type channels CaV3.1 or treatment with low concentrations of mibefradil does not affect renal autoregulation. Thus, T-type calcium channels are not involved in renal autoregulation in response to acute increases in RPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bjorling K, Morita H, Olsen MF, Prodan A, Hansen PB, Lory P, Holstein-Rathlou NH, Jensen LJ (2013) Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel. Acta Physiol (Oxf) 207:709–720

    Article  CAS  Google Scholar 

  2. Briggs JP, Wright FS (1979) Feedback control of glomerular filtration rate: site of the effector mechanism. Am J Physiol 236:F40–F47

    CAS  PubMed  Google Scholar 

  3. Carmines PK, Fowler BC, Bell PD (1993) Segmentally distinct effects of depolarization on intracellular [Ca2+] in renal arterioles. Am J Physiol 265:F677–F685

    CAS  PubMed  Google Scholar 

  4. Carmines PK, Inscho EW, Gensure RC (1990) Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons. Am J Physiol 258:F94–102

    CAS  PubMed  Google Scholar 

  5. Carmines PK, Mitchell KD, Navar LG (1992) Effects of calcium antagonists on renal hemodynamics and glomerular function. Kidney Int Suppl 36:S43–S48

    CAS  PubMed  Google Scholar 

  6. Casellas D, Moore LC (1993) Autoregulation of intravascular pressure in preglomerular juxtamedullary vessels. Am J Physiol 264:F315–F321

    CAS  PubMed  Google Scholar 

  7. Casellas D, Navar LG (1984) In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol 246:F349–F358

    CAS  PubMed  Google Scholar 

  8. Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2003) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581

    Article  CAS  PubMed  Google Scholar 

  9. Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA et al (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302:1416–1418

    Article  CAS  PubMed  Google Scholar 

  10. Enyeart JJ, Biagi BA, Day RN, Sheu SS, Maurer RA (1990) Blockade of low and high threshold Ca2+ channels by diphenylbutylpiperidine antipsychotics linked to inhibition of prolactin gene expression. J Biol Chem 265:16373–16379

    CAS  PubMed  Google Scholar 

  11. Feng MG, Li M, Navar LG (2004) T-type calcium channels in the regulation of afferent and efferent arterioles in rats. Am J Physiol Renal Physiol 286:F331–F337

    Article  CAS  PubMed  Google Scholar 

  12. Gollasch M, Nelson MT (1997) Voltage-dependent Ca2+ channels in arterial smooth muscle cells. Kidney Blood Press Res 20:355–371

    Article  CAS  PubMed  Google Scholar 

  13. Gordienko DV, Clausen C, Goligorsky MS (1994) Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries. Am J Physiol 266:F325–F341

    CAS  PubMed  Google Scholar 

  14. Griffin KA, Hacioglu R, Bu-Amarah I, Loutzenhiser R, Williamson GA, Bidani AK (2004) Effects of calcium channel blockers on “dynamic” and “steady-state step” renal autoregulation. Am J Physiol Renal Physiol 286:F1136–F1143

    Article  CAS  PubMed  Google Scholar 

  15. Gros R, Van WR, You X, Thorin E, Husain M (2002) Effects of age, gender, and blood pressure on myogenic responses of mesenteric arteries from C57BL/6 mice. Am J Physiol Heart Circ Physiol 282:H380–H388

    CAS  PubMed  Google Scholar 

  16. Hansen PB, Jensen BL, Andreasen D, Skott O (2001) Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ Res 89:630–638

    Article  CAS  PubMed  Google Scholar 

  17. Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK et al (2014) Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 115:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harrison-Bernard LM, Cook AK, Oliverio MI, Coffman TM (2003) Renal segmental microvascular responses to ANG II in AT1A receptor null mice. Am J Physiol Renal Physiol 284:F538–F545

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi K, Epstein M, Loutzenhiser R (1989) Pressure-induced vasoconstriction of renal microvessels in normotensive and hypertensive rats. Studies in the isolated perfused hydronephrotic kidney. Circ Res 65:1475–1484

    Article  CAS  PubMed  Google Scholar 

  20. Hegyi B, Komaromi I, Nanasi PP, Szentandrassy N (2013) Selectivity problems with drugs acting on cardiac Na(+) and Ca(2)(+) channels. Curr Med Chem 20:2552–2571

    Article  CAS  PubMed  Google Scholar 

  21. Heptinstall RH, Hill GS (1967) Steroid-induced hypertension in the rat. A study of the effects of renal artery constriction on hypertension caused by deoxycorticosterone. Lab Invest 16:751–767

    CAS  PubMed  Google Scholar 

  22. Honda M, Hayashi K, Matsuda H, Kubota E, Tokuyama H, Okubo K, Takamatsu I, Ozawa Y, Saruta T (2001) Divergent renal vasodilator action of L- and T-type calcium antagonists in vivo. J Hypertens 19:2031–2037

    Article  CAS  PubMed  Google Scholar 

  23. Ishii H, Itoh K, Nose T (1980) Different antihypertensive effects of nifedipine in conscious experimental hypertensive and normotensive rats. Eur J Pharmacol 64:21–29

    Article  CAS  PubMed  Google Scholar 

  24. Iversen BM, Sekse I, Ofstad J (1987) Resetting of renal blood flow autoregulation in spontaneously hypertensive rats. Am J Physiol 252:F480–F486

    CAS  PubMed  Google Scholar 

  25. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31:35–45

    Article  CAS  PubMed  Google Scholar 

  26. Klugbauer N, Marais E, Lacinova L, Hofmann F (1999) A T-type calcium channel from mouse brain. Pflugers Arch 437:710–715

    Article  CAS  PubMed  Google Scholar 

  27. Lai IR, Ma MC, Chen CF, Chang KJ (2003) The effect of an intestinal ischemia-reperfusion injury on renal nerve activity among rats. Shock 19:480–485

    Article  PubMed  Google Scholar 

  28. Loutzenhiser R, Chilton L, Trottier G (1997) Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II. Am J Physiol 273:F307–F314

    CAS  PubMed  Google Scholar 

  29. Loutzenhiser R, Griffin K, Williamson G, Bidani A (2006) Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul Integr Comp Physiol 290:R1153–R1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martens JR, Gelband CH (1996) Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension. Circ Res 79:295–301

    Article  CAS  PubMed  Google Scholar 

  31. Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA (2000) Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther 295:302–308

    CAS  PubMed  Google Scholar 

  32. Mehrke G, Zong XG, Flockerzi V, Hofmann F (1994) The Ca(++)-channel blocker Ro 40–5967 blocks differently T-type and L-type Ca++ channels. J Pharmacol Exp Ther 271:1483–1488

    CAS  PubMed  Google Scholar 

  33. Mishra SK, Hermsmeyer K (1994) Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res 75:144–148

    Article  CAS  PubMed  Google Scholar 

  34. Moosmang S, Haider N, Bruderl B, Welling A, Hofmann F (2006) Antihypertensive effects of the putative T-type calcium channel antagonist mibefradil are mediated by the L-type calcium channel Cav1.2. Circ Res 98:105–110

    Article  CAS  PubMed  Google Scholar 

  35. Morita H, Shi J, Ito Y, Inoue R (2002) T-channel-like pharmacological properties of high voltage-activated, nifedipine-insensitive Ca2+ currents in the rat terminal mesenteric artery. Br J Pharmacol 137:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narahashi T, Tsunoo A, Yoshii M (1987) Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol 383:231–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Navar LG, Champion WJ, Thomas CE (1986) Effects of calcium channel blockade on renal vascular resistance responses to changes in perfusion pressure and angiotensin-converting enzyme inhibition in dogs. Circ Res 58:874–881

    Article  CAS  PubMed  Google Scholar 

  38. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–18

    CAS  PubMed  Google Scholar 

  39. Nishiyama A, Jackson KE, Majid DS, Rahman M, Navar LG (2006) Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade. Am J Physiol Heart Circ Physiol 290:H772–H777

    Article  CAS  PubMed  Google Scholar 

  40. Ono H, Kokubun H, Hashimoto K (1974) Abolition by calcium antagonists of the autoregulation of renal blood flow. Naunyn Schmiedebergs Arch Pharmacol 285:201–207

    Article  CAS  PubMed  Google Scholar 

  41. Ozawa Y, Hayashi K, Nagahama T, Fujiwara K, Saruta T (2001) Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney. Hypertension 38:343–347

    Article  CAS  PubMed  Google Scholar 

  42. Poulsen CB, Al-Mashhadi RH, Cribbs LL, Skott O, Hansen PB (2011) T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles. Kidney Int 79:443–451

    Article  CAS  PubMed  Google Scholar 

  43. Pratt PF, Bonnet S, Ludwig LM, Bonnet P, Rusch NJ (2002) Upregulation of L-type Ca2+ channels in mesenteric and skeletal arteries of SHR. Hypertension 40:214–219

    Article  CAS  PubMed  Google Scholar 

  44. Probst RJ, Lim JM, Bird DN, Pole GL, Sato AK, Claybaugh JR (2006) Gender differences in the blood volume of conscious Sprague–Dawley rats. J Am Assoc Lab Anim Sci 45:49–52

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roman RJ, Cowley AW Jr (1985) Characterization of a new model for the study of pressure-natriuresis in the rat. Am J Physiol 248:F190–F198

    CAS  PubMed  Google Scholar 

  46. Sesoko S, Pegram BL, Frohlich ED (1984) Systemic and regional hemodynamics in normotensive and spontaneously hypertensive rats after slow-channel calcium blocker nitrendipine. Clin Exp Hypertens A 6:979–991

    CAS  PubMed  Google Scholar 

  47. Shipley RE and Study RS (1951) Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Am J Physiol 167:676–688

    PubMed  Google Scholar 

  48. Smirnov SV, Loutzenhiser K, Loutzenhiser R (2013) Voltage-activated Ca(2+) channels in rat renal afferent and efferent myocytes: no evidence for the T-type Ca(2+) current. Cardiovasc Res 97:293–301

    Article  CAS  PubMed  Google Scholar 

  49. Sorensen CM, Giese I, Braunstein TH, Brasen JC, Salomonsson M, Holstein-Rathlou NH (2012) Role of connexin40 in the autoregulatory response of the afferent arteriole. Am J Physiol Renal Physiol 303:F855–F863

    Article  CAS  PubMed  Google Scholar 

  50. Sorensen CM, Giese I, Braunstein TH, Holstein-Rathlou NH, Salomonsson M (2011) Closure of multiple types of K+ channels is necessary to induce changes in renal vascular resistance in vivo in rats. Pflugers Arch 462:655–667

    Article  CAS  PubMed  Google Scholar 

  51. Sorensen CM, Leyssac PP, Skott O, Holstein-Rathlou NH (2000) Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow. Am J Physiol Regul Integr Comp Physiol 279(3):R1017–R1024

    CAS  PubMed  Google Scholar 

  52. Steinhausen M, Blum M, Fleming JT, Holz FG, Parekh N, Wiegman DL (1989) Visualization of renal autoregulation in the split hydronephrotic kidney of rats. Kidney Int 35:1151–1160

    Article  CAS  PubMed  Google Scholar 

  53. Thuesen AD, Andersen H, Cardel M, Toft A, Walter S, Marcussen N, Jensen BL, Bie P, Hansen PB (2014) Differential effect of T-type voltage-gated Ca2+ channel disruption on renal plasma flow and glomerular filtration rate in vivo. Am J Physiol Renal Physiol 307:F445–F452

    Article  CAS  PubMed  Google Scholar 

  54. Viana F, Van den Bosch L, Missiaen L, Vandenberghe W, Droogmans G, Nilius B, Robberecht W (1997) Mibefradil (Ro 40–5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22:299–311

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Aukland K, Iversen BM (1996) Autoregulation of total and zonal glomerular filtration rate in spontaneously hypertensive rats during antihypertensive therapy. J Cardiovasc Pharmacol 28:833–841

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The skillful technical assistance of Ms. Cecilia Vallin, Ms. Nadia Soori, and Ms. Vibeke G. Christensen is gratefully acknowledged. We acknowledge the Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Mehlin Sorensen.

Ethics declarations

Grants

This study was supported by the Danish National Research Foundation, the A.P. Møller Foundation for the Advancement of Medical Sciences, and Snedkermester Sophus Jacobsen og Hustru Astrid Jacobsens Fond.

Conflict of interest

The authors declare that they do not have competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frandsen, R.H., Salomonsson, M., Hansen, P.B.L. et al. No apparent role for T-type Ca2+ channels in renal autoregulation. Pflugers Arch - Eur J Physiol 468, 541–550 (2016). https://doi.org/10.1007/s00424-015-1770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1770-9

Keywords

Navigation