Skip to main content
Log in

Nicorandil stimulates a Na+/Ca2+ exchanger by activating guanylate cyclase in guinea pig cardiac myocytes

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Nicorandil, a hybrid of an ATP-sensitive K+ (KATP) channel opener and a nitrate generator, is used clinically for the treatment of angina pectoris. This agent has been reported to exert antiarrhythmic actions by abolishing both triggered activity and spontaneous automaticity in an in vitro study. It is well known that delayed afterdepolarizations (DADs) are caused by the Na+/Ca2+ exchange current (I NCX). In this study, we investigated the effect of nicorandil on the cardiac Na+/Ca2+ exchanger (NCX1). We used the whole-cell patch clamp technique and the Fura-2/AM (Ca2+ indicator) method to investigate the effect of nicorandil on I NCX in isolated guinea pig ventricular myocytes and CCL39 fibroblast cells transfected with dog heart NCX1. Nicorandil enhanced I NCX in a concentration-dependent manner. The EC50 (half-maximum concentration for enhancement of the drug) values were 15.0 and 8.7 μM for the outward and inward components of I NCX, respectively. 8-Bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP), a membrane-permeable analog of guanosine 3′,5′-cyclic monophosphate (cGMP), enhanced I NCX. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor (10 μM), completely abolished the nicorandil-induced I NCX increase. Nicorandil increased I NCX in CCL39 cells expressing wild-type NCX1 but did not affect mutant NCX1 without a long intracellular loop between transmembrane segments (TMSs) 5 and 6. Nicorandil at 100 μM abolished DADs induced by electrical stimulation with ouabain. Nicorandil enhanced the function of NCX1 via guanylate cyclase and thus may accelerate Ca2+ exit via NCX1. This may partially contribute to the cardioprotection by nicorandil in addition to shortening action potential duration (APD) by activating KATP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APD:

Action potential duration

DADs:

Delayed afterdepolarizations

I NCX :

Na+/Ca2+ exchange current

I-V :

Current-voltage

KATP channel:

ATP-sensitive K+ channel

TMSs:

Transmembrane segments

References

  1. Ago Y, Kawasaki T, Nashida T, Ota Y, Cong Y, Kitamoto M et al (2011) SEA0400, a specific Na+/Ca2+ exchange inhibitor, prevents dopaminergic neurotoxicity in an MPTP mouse model of Parkinson’s disease. Neuropharmacology 61:1441–1451

    Article  CAS  PubMed  Google Scholar 

  2. Amoroso S, Tortiglione A, Secondo A, Catalano A, Montagnani S, Di Renzo G et al (2000) Sodium nitroprusside prevents chemical hypoxia-induced cell death through iron ions stimulating the activity of the Na+-Ca2+ exchanger in C6 glioma cells. J Neurochem 74:1505–1513

    Article  CAS  PubMed  Google Scholar 

  3. Asano S, Matsuda T, Takuma K, Kim HS, Sato T, Nishikawa T, Baba A (1995) Nitroprusside and cyclic GMP stimulate Na+-Ca2+ exchange activity in neuronal preparations and cultured astrocytes. J Neurochem 64:2437–2441

    Article  CAS  PubMed  Google Scholar 

  4. Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281

    Article  CAS  PubMed  Google Scholar 

  5. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  6. Despa S, Brette F, Orchard CH, Bers DM (2003) Na/Ca exchange Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophys J 85:3388–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furukawa K, Ohshima N, Tawada-Iwata Y, Shigekawa M (1991) Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture. J Biol Chem 266:12337–12341

    CAS  PubMed  Google Scholar 

  8. He Z, Petesch N, Voges KP, Röben W, Phillipson KD (1997) Identification of important amino acid residues of the Na+-Ca2+ exchanger inhibitory peptide, XIP. J Membr Biol 156:149–156

    Article  CAS  PubMed  Google Scholar 

  9. Hiraoka M, Fan Z (1989) Activation of ATP-sensitive outward K+ current by nicorandil (2-nicotinamidoethyl nitrate) in isolated ventricular myocytes. J Pharmacol Exp Ther 250:278–285

    CAS  PubMed  Google Scholar 

  10. Hothi SS, Thomas G, Killeen MJ, Grace AA, Huang CLH (2009) Empirical correlation of triggered activity and spatial and temporal re-entrant substrates with arrhythmogenicity in a murine model for Jervell and Lange-Nielsen syndrome. Pflugers Arch Eur J Physiol 458:819–835

    Article  CAS  Google Scholar 

  11. Horie M, Suzuki H, Hayashi S, Zang W-J, Komori M, Okada Y et al (1991) Nicorandil reduced the basal level of cytosolic free calcium in single guinea pig ventricular myocytes. Cell Struct Funct 16:433–440

    Article  CAS  PubMed  Google Scholar 

  12. Horinaga S, Kobayashi N, Higashi T, Hara K, Hara S, Matsuoka H (2001) Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat. J Cardiovasc Pharmacol 38:200–210

    Article  Google Scholar 

  13. Imanishi S, Arita M, Aomine M, Kiyosue T (1984) Antiarrhythmic effects of nicorandil on canine cardiac Purkinje fibers. J Cardiovasc Pharmacol 6:772–779

    Article  CAS  PubMed  Google Scholar 

  14. Ishizuka N, Saito K, Akima M, Matsubara S, Saito M (2000) Hypotensive interaction of sildenafil and nicorandil in rats through the cGMP pathway but not by KATP channel activation. Jpn J Pharmacol 84:316–324

    Article  CAS  PubMed  Google Scholar 

  15. Iwamoto T, Nakamura TY, Pan Y, Uehara A, Imanaga I, Shigekawa M (1999) Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger. FEBS Lett 446:64–268

    Article  Google Scholar 

  16. Janvier NC, Boyett MR (1996) The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res 32:69–84

    Article  CAS  PubMed  Google Scholar 

  17. Kitano T, Takuma K, Kawasaki T, Inoue Y, Ikehara A, Nashida T et al (2010) The Na+/Ca2+ exchanger-mediated Ca2+ influx triggers nitric oxide-induced cytotoxicity in cultured astrocytes. Neurochem Int 57:58–66

    Article  Google Scholar 

  18. Kimura J, Noma A, Irisawa H (1986) Na-Ca exchange current in mammalian heart cells. Nature 319:596–597

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi S, Nakaya H, Takizawa T, Hara Y, Kimura S, Saito T et al (1996) Endothelin-1 partially inhibits ATP-sensitive K+ current in guinea pig ventricular cells. J Cardiovasc Pharmacol 27:12–19

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi Y, Miyata A, Tanno K, Kikushima S, Baba T, Katagiri T (1998) Effects of nicorandil, a potassium channel opener, on idiopathic ventricular tachycardia. J Am Coll Cardiol 32:1377–1383

    Article  CAS  PubMed  Google Scholar 

  21. Komori S, Ishii M, Hashimoto K (1985) Antiarrhythmic effects of coronary vasodilators on canine ventricular arrhythmia models. Jpn J Pharmacol 38:73–82

    Article  CAS  PubMed  Google Scholar 

  22. Kukovetz WR, Holzmann S, Braida C, Pöch G (1991) Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization. J Cardiovasc Pharmacol 17:627–633

    Article  CAS  PubMed  Google Scholar 

  23. Lathrop DA, Nànàsi PP, Varrò A (1990) In vitro cardiac models of dog Purkinje fibre triggered and spontaneous electrical activity: effects of nicorandil. Br J Pharmacol 99:119–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liou JY, Hong HJ, Sung LC, Chao HH, Chen TH, Chan P et al (2011) Nicorandil inhibits angiotensin-II-induced proliferation of cultured rat cardiac fibroblasts. Pharmacology 87:144–151

    Article  CAS  PubMed  Google Scholar 

  25. Matchkov VV, Gustafsson H, Rahman A, Boedtkjer DMB, Gorintin S, Hansen AK et al (2007) Interaction between Na+/K+-pump and Na+/Ca2+-exchanger modulates intercellular communication. Circ Res 100:1026–1035

    Article  CAS  PubMed  Google Scholar 

  26. Meisheri KD, Cipkus-Dubray LA, Hosner JM, Khan SA (1991) Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J Cardiovasc Pharmacol 17:903–912

    Article  CAS  PubMed  Google Scholar 

  27. Minamiyama Y, Takemura S, Hai S, Suehiro S, Okada S, Funae Y (2007) Nicorandil elevates tissue cGMP levels in a nitric-oxide-independent manner. J Pharmacol Sci 103:33–39

    Article  CAS  PubMed  Google Scholar 

  28. Newgreen DT, Bray KM, McHarg AD, Weston AH, Duty S, Brown BS et al (1990) The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim. Br J Pharmacol 100:605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD (1999) A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 274:910–917

    Article  CAS  PubMed  Google Scholar 

  30. Nishida T, Takuma K, Fukuda S, Kawasaki T, Takahashi T, Baba A, Ago Y, Matsuda T (2011) The specific Na+/Ca2+ exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 59:51–58

    Article  Google Scholar 

  31. Nishimura J (2006) Topics on the Na+/Ca2+ exchanger: involvement of Na+/Ca2+ exchanger in the vasodilator-induced vasorelaxation. J Pharmacol Sci 102:27–31

    Article  CAS  PubMed  Google Scholar 

  32. Nishimura N, Reisen Y, Matsumoto A, Ogura T, Miyata Y, Suzuki K et al (2010) Effects of nicorandil on the cAMP-dependent Cl current in guinea pig ventricular cells. J Pharmacol Sci 112:415–423

    Article  CAS  PubMed  Google Scholar 

  33. Niu CF, Watanabe Y, Ono K, Iwamoto T, Yamashita K, Satoh H et al (2007) Characterization of SN-6, a novel Na+/Ca2+ exchange inhibitor in guinea pig cardiac ventricular myocytes. Eur J Pharmacol 573:161–169

    Article  CAS  PubMed  Google Scholar 

  34. Pan Y, Iwamoto T, Uehara A, Nakamura TY, Imanaga I, Shigekawa M (2000) Physiological functions of the regulatory domains of cardiac Na+/Ca2+ exchanger NCX1. Am J Physiol Cell Physiol 279:C393–C402

    CAS  PubMed  Google Scholar 

  35. Ren X, Philipson KD (2013) The topology of the cardiac Na+/Ca2+ exchanger, NCX1. J Mol Cell Cardiol 57:68–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reppel M, Fleischmann BK, Reuter H, Sasse P, Schunkert H, Hescheler J (2007) Regulation of the Na+/Ca2+ exchanger (NCX) in the murine embryonic heart. Cardiovasc Res 75:99–108

    Article  CAS  PubMed  Google Scholar 

  37. Secondo A, Molinaro P, Pannaccione A, Esposito A, Cantile M, Lippiello P et al (2011) Nitric oxide stimulates NCX1 and NCX2 but inhibits NCX3 isoform by three distinct molecular determinants. Mol Pharmacol 79:558–568

    Article  CAS  PubMed  Google Scholar 

  38. Southerton JS, Weston AH, Bray KM, Newgreen DT, Taylor SG (1988) The potassium channel opening action of pinacidil; studies using biochemical, ion flux and microelectrode techniques. Naunyn Schmiedeberg Arch Pharmacol 338:310–318

    Article  CAS  Google Scholar 

  39. Szerencsei RT, Kinjo TG, Schnetkamp PPM (2013) The topology of the C-terminal sections of the NCX1 Na+/Ca2+ exchanger and the NCKX2 Na+/Ca2+-K+ exchanger. Channels 7:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Watanabe I, Okamura Y, Ohkubo K, Nagashima K, Mano H, Sonoda K et al (2011) Effect of ATP-sensitive K+ channel opener nicorandil in a canine model of proarrhythmia. Int Heart J 52:318–322

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T et al (2001) Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 132:1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watanabe Y, Iwamoto T, Shigekawa M, Kimura J (2002) Inhibitory effect of aprindine on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 136:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe Y, Iwamoto T, Matsuoka I, Ono T, Shigekawa M, Kimura J (2004) Effects of amiodarone on mutant Na+/Ca2+ exchangers expressed in CCL 39 cells. Eur J Pharmacol 496:49–54

    Article  CAS  PubMed  Google Scholar 

  44. Weisser-Thomas J, Nguyen Q, Schuettel M, Thomas D, Dreiner U, Grohé C et al (2007) Age and hypertrophy related changes in contractile post-rest behavior and action potential properties in isolated rat myocytes. AGE 29:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. William M, Vien J, Hamilton E, Garcia A, Bundgaard H, Clarke RJ, Rasmussen HH (2005) The nitric oxide donor sodium nitroprusside stimulates the Na+-K+ pump in isolated rabbit cardiac myocytes. J Physiol 565:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamakawa T, Watanabe Y, Watanabe H, Kimura J (2012) Inhibitory effect of cibenzoline on Na+/Ca2+ exchange current in guinea-pig cardiac ventricular myocytes. J Pharmacol Sci 120:59–62

    Article  CAS  PubMed  Google Scholar 

  47. Yanagisawa T, Hashimoto H, Taira N (1988) The negative inotropic effect of nicorandil is independent of cyclic GMP changes: a comparison with pinacidil and cromakalim in canine atrial muscle. Br J Pharmacol 95:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang YH, Hancox JC (2009) Regulation of cardiac Na+-Ca2+ exchange activity by protein kinase phosphorylation—still a paradox? Cell Calcium 45:1–10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hamamatsu University School of Medicine Intramural Research Program.

Authors’ contributions

J-Z Wei, K Yamashita, M Tashiro, S Kita, T Iwamoto, and Y Watanabe performed the research (cell isolation: K Yamashita and Y Watanabe Y; patch clamp experiment: J-Z Wei, M Tashiro, and Y Watanabe Y; [Ca2+]i measurement: J-Z Wei and K Yamashita). K Takeuchi and Y Watanabe designed the research study. H Watanabe contributed an essential tool. J-Z Wei, K Yamashita, and Y Watanabe analysed the data. Y Watanabe and J Kimura wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhide Watanabe.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Watanabe, Y., Takeuchi, K. et al. Nicorandil stimulates a Na+/Ca2+ exchanger by activating guanylate cyclase in guinea pig cardiac myocytes. Pflugers Arch - Eur J Physiol 468, 693–703 (2016). https://doi.org/10.1007/s00424-015-1763-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1763-8

Keywords

Navigation