Skip to main content
Log in

Mechanisms underlying spontaneous constrictions of postcapillary venules in the rat stomach

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Postcapillary venules (PCVs) play a critical role in regulating capillary hydrostatic pressure, but their contractile mechanisms are not well understood. We examined the properties of spontaneous vasomotion and corresponding Ca2+ transients in gastric PCV. In the rat gastric submucosa, changes in PCV diameter and intracellular Ca2+ dynamics were visualised by video tracking system and fluorescent Ca2+ imaging, respectively, while PCV morphology was examined by immunohistochemistry. Stellate-shaped PCV mural cells expressing α-smooth muscle actin exhibited synchronised spontaneous Ca2+ transients to develop vasomotion which was abolished by nifedipine (1 μM), cyclopiazonic acid (10 μM), or Ca2+-activated Cl channel inhibitors (100 μM niflumic acid, 1 μM T16Ainh-A01). A gap junction blocker (3 μM carbenoxolone) disrupted the synchrony of spontaneous Ca2+ transients amongst PCV mural cells and attenuated spontaneous vasomotion. Low chloride solution ([Cl]0 = 12.4 mM) also disrupted the synchrony of spontaneous Ca2+ transients and abolished vasomotion. Na+-K+-Cl co-transporter inhibitors (10 μM bumetanide, 30 μM furosemide) suppressed spontaneous Ca2+ transients and vasoconstrictions. A phosphodiesterase type 5 (PDE5) inhibitor (1 μM tadalafil) disrupted the spontaneous Ca2+ transient synchrony and abolished vasomotion in a nitric oxide (NO)-dependent manner. Thus, gastric PCVs exhibit spontaneous vasomotion, resulting from synchronised spontaneous Ca2+ transients within a network of stellate-shaped PCV mural cells. An active Cl accumulation partly via Na+-K+-Cl co-transport appears to be fundamental in maintaining depolarisation upon the opening of Ca2+-activated Cl channels that triggers Ca2+ influx via voltage-dependent L-type Ca2+ channels. Basal PDE5 activity may continuously counteract vaso-relaxing effects of endothelial NO to maintain spontaneous vasomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aickin CC, Brading AF (1990) The effect of loop diuretics on Cl transport in smooth muscle of the guinea-pig vas deferens and taenia from the caecum. J Physiol 421:33–53

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Baluk P, Bolton P, Hirata A, Thurston G, McDonald DM (1998) Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways. Am J Pathol 152:1463–1476

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Bulley S, Jaggar JH (2014) Cl channels in smooth muscle cells. Pflugers Arch 466:861–872

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Chen RY, Li DS, Guth PH (1992) Role of calcitonin gene-related peptide in capsaicin-induced gastric submucosal arteriolar dilation. Am J Physiol 262:H1350–H1355

    PubMed  CAS  Google Scholar 

  5. Davis AJ, Shi J, Pritchard HA, Chadha PS, Leblanc N, Vasilikostas G, Yao Z, Verkman AS, Albert AP, Greenwood IA (2013) Potent vasorelaxant activity of the TMEM16A inhibitor T16Ainh-A01. Br J Pharmacol 168:773–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Figini M, Emanueli C, Grady EF, Kirkwood K, Payan DG, Ansel J, Gerard C, Geppetti P, Bunnett N (1997) Substance P and bradykinin stimulate plasma extravasation in the mouse gastrointestinal tract and pancreas. Am J Physiol 272:G785–G793

    PubMed  CAS  Google Scholar 

  7. Fujiwara T, Uehara Y (1984) The cytoarchitecture of the wall and the innervation pattern of the microvessels in the rat mammary gland: a scanning electron microscopic observation. Am J Anat 170:39–54

    Article  PubMed  CAS  Google Scholar 

  8. Gannon B, Browning J, O’Brien P (1982) The microvascular architecture of the glandular mucosa of rat stomach. J Anat 135:667–683

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Granger DN, Perry MA, Kvietys PR (1983) The microcirculation and fluid transport in digestive organs. Fed Proc 42:1667–1672

    PubMed  CAS  Google Scholar 

  10. Guth PH, Smith E (1975) Neural control of gastric mucosal blood flow in the rat. Gastroenterology 69:935–940

    PubMed  CAS  Google Scholar 

  11. Haddock RE, Hill CE (2002) Differential activation of ion channels by inositol 1,4,5-trisphosphate (IP3)- and ryanodine-sensitive calcium stores in rat basilar artery vasomotion. J Physiol 545:615–627

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Hashitani H, Takano H, Fujita K, Mitsui R, Suzuki H (2011) Functional properties of suburothelial microvessels in the rat bladder. J Urol 185:2382–2391

    Article  PubMed  Google Scholar 

  13. Hashitani H, Mitsui R, Masaki S, van Helden DF (2015) Pacemaker role of pericytes in generating synchronised spontaneous Ca2+ transients in the myenteric microvasculature of the guinea-pig gastric antrum. Cell Calcium 58:442–456

    Article  PubMed  CAS  Google Scholar 

  14. Hashitani H, Mitsui R, Shimizu Y, Higashi R, Nakamura K (2012) Functional and morphological properties of pericytes in suburothelial venules of the mouse bladder. Br J Pharmacol 167:1723–1736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Hirose K, Iino M, Endo M (1993) Caffeine inhibits Ca2+-mediated potentiation of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized vascular smooth muscle cells. Biochem Biophys Res Commun 194:726–732

    Article  PubMed  CAS  Google Scholar 

  16. Hirst GD (1977) Neuromuscular transmission in arterioles of guinea-pig submucosa. J Physiol 273:263–275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Holman ME, Kasby CB, Suthers MB, Wilson JA (1968) Some properties of the smooth muscle of rabbit portal vein. J Physiol 196:111–132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Iino M (1989) Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94:363–383

    Article  PubMed  CAS  Google Scholar 

  19. Jones TW (1852) Discovery that the veins of bat’s wing (which are furnished with valves) are endowed with rythmical contractility, and that the onward flow of blood is accelerated by each contraction. Philos Trans R Soc Lond 142:131–136

    Article  Google Scholar 

  20. Joyce NC, DeCamilli P, Boyles J (1984) Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvasc Res 28:206–219

    Article  PubMed  CAS  Google Scholar 

  21. Kito Y, Suzuki H (2003) Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine. J Physiol 15:803–818

    Article  Google Scholar 

  22. Mazzone A, Eisenman ST, Strege PR, Yao Z, Ordog T, Gibbons SJ, Farrugia G (2012) Inhibition of cell proliferation by a selective inhibitor of the Ca2+-activated Cl channel, Ano1. Biochem Biophys Res Commun 427:248–253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Mitsui R (2009) Characterisation of calcitonin gene-related peptide-immunoreactive neurons in the myenteric plexus of rat colon. Cell Tissue Res 337:37–43

    Article  PubMed  CAS  Google Scholar 

  24. Mitsui R, Hashitani H (2013) Immunohistochemical characteristics of suburothelial microvasculature in the mouse bladder. Histochem Cell Biol 140:189–200

    Article  PubMed  CAS  Google Scholar 

  25. Mitsui R, Hashitani H (2015) Functional properties of submucosal venules in the rat stomach. Pflugers Arch 467:1327–1342

    Article  PubMed  CAS  Google Scholar 

  26. Mitsui R, Miyamoto S, Takano H, Hashitani H (2013) Properties of submucosal venules in the rat distal colon. Br J Pharmacol 170:968–977

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Neild TO (1989) Measurement of arteriole diameter changes by analysis of television images. Blood Vessels 26:48–52

    PubMed  CAS  Google Scholar 

  28. Neild TO, Shen KZ, Surprenant A (1990) Vasodilatation of arterioles by acetylcholine released from single neurones in the guinea-pig submucosal plexus. J Physiol 420:247–265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Namkung W, Phuan PW, Verkman AS (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 286:2365–2374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Peng H, Matchkov V, Ivarsen A, Aalkjær C, Nilsson H (2001) Hypothesis for the initiation of vasomotion. Circ Res 88:810–815

    Article  PubMed  CAS  Google Scholar 

  31. Peti-Peterdi J, Kovács G, Hamar P, Rosivall L (1998) Hemodynamics of gastric microcirculation in rats. Am J Physiol 275:H1404–H1410

    PubMed  CAS  Google Scholar 

  32. Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458:1023–1038

    Article  PubMed  CAS  Google Scholar 

  33. Piper AS, Large WA (2003) Multiple conductance states of single Ca2+-activated Cl channels in rabbit pulmonary artery smooth muscle cells. J Physiol 547:181–196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Piper AS, Large WA (2004) Single cGMP-activated Ca2+-dependent Cl channels in rat mesenteric artery smooth muscle cells. J Physiol 555:397–408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Rhodin JA (1968) Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res 25:452–500

    Article  PubMed  CAS  Google Scholar 

  36. Shimizu Y, Mochizuki S, Mitsui R, Hashitani H (2014) Neurohumoral regulation of spontaneous constrictions in suburothelial venules of the rat urinary bladder. Vascul Pharmacol 60:84–94

    Article  PubMed  CAS  Google Scholar 

  37. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Iβ. Nature 404:197–201

    Article  PubMed  CAS  Google Scholar 

  38. Surks HK (2007) cGMP-dependent protein kinase I and smooth muscle relaxation: a tale of two isoforms. Circ Res 101:1078–1080

    Article  PubMed  CAS  Google Scholar 

  39. van Helden DF (1993) Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol 471:465–479

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vanner S (1994) Corelease of neuropeptides from capsaicin-sensitive afferents dilates submucosal arterioles in guinea pig ileum. Am J Physiol 267:G650–G655

    PubMed  CAS  Google Scholar 

  41. von der Weid PY, Rahman M, Imtiaz MS, van Helden DF (2008) Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol Heart Circ Physiol 295:H1989–H2000

    Article  PubMed  Google Scholar 

  42. Wouters M, De Laet A, Donck LV, Delpire E, van Bogaert PP, Timmermans JP, de Kerchove d’Exaerde A, Smans K, Vanderwinden JM (2006) Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker. Am J Physiol Gastrointest Liver Physiol 290:G1219–G1227

    Article  PubMed  CAS  Google Scholar 

  43. Yamamoto Y, Klemm MF, Edwards FR, Suzuki H (2001) Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles. J Physiol 535:181–195

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. R. J. Lang (Monash University) for his critical reading of the manuscript. The authors gratefully acknowledge that this study was partly supported by Grant-in-Aid for Young Scientists (B) (No. 26860521) from Japan Society for Promotion of the Science (JSPS) to R.M., Grant-in-Aid for Challenging Exploratory Research (No. 26670705) from JSPS to H.H. and Grant-in-Aid from The Hori Sciences and Arts Foundation to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Retsu Mitsui.

Ethics declarations

Ethics

The experimental protocols in the present study were approved by the Nagoya City University Medical School Experimental Animal Committee.

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, R., Hashitani, H. Mechanisms underlying spontaneous constrictions of postcapillary venules in the rat stomach. Pflugers Arch - Eur J Physiol 468, 279–291 (2016). https://doi.org/10.1007/s00424-015-1752-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1752-y

Keywords

Navigation