Hypoxia regulates the hematopoietic stem cell niche

  • Takayuki Morikawa
  • Keiyo Takubo
Invited Review


Bone marrow, the site of hematopoiesis throughout adulthood, is a physiologically hypoxic organ. Thus, various biological oxygen sensors and their signaling cascades play a pivotal role in hematopoietic systems in the bone marrow under both physiologic and pathologic conditions. Hypoxia-inducible factors (HIFs) are hypoxic stress sensor proteins that are stabilized under homeostatic or stress-induced hypoxia. In the hypoxic bone marrow, HIFs play crucial roles in hematopoietic stem cells (HSCs) and in the cells of the HSC niche. The signals downstream of the HIFs maintain HSC quiescence, survival, and metabolic homeostasis through both cell-autonomous and non-cell-autonomous mechanisms. Leukemic stem cells (LSCs) hijack these delicate hypoxia-sensing mechanisms to sustain their self-renewal potential, promoting disease progression and drug resistance even under normoxic conditions. This review focuses on HIF-mediated oxygen-sensing mechanisms of adult HSCs and LSCs and their niche cells in the hypoxic bone marrow.


Hematopoietic stem cell Niche Leukemic stem cell Hypoxia Hypoxia-inducible factor-1α Stem cell metabolism 



This work was supported in part by a MEXT Grant-in-Aid for Scientific Research (B), a MEXT Grant-in-Aid for Scientific Research on Innovative Areas “Stem Cell Aging and Disease,” an AMED Grant-in-Aid for Core Research for Evolutional Science and Technology (AMED-CREST), and a Grant from National Center for Global Health and Medicine (to K.T.).


  1. 1.
    Acker T, Acker H (2004) Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 207:3171–3188. doi: 10.1242/jeb.01075 PubMedCrossRefGoogle Scholar
  2. 2.
    Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603. doi: 10.1038/nature04247 PubMedCrossRefGoogle Scholar
  3. 3.
    Adelman DM, Maltepe E, Simon MC (1999) Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev 13:2478–2483PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Alves LR, Costa ES, Sorgine MH, Nascimento-Silva MC, Teodosio C, Barcena P, Castro-Faria-Neto HC, Bozza PT, Orfao A, Oliveira PL, Maya-Monteiro CM (2011) Heme-oxygenases during erythropoiesis in K562 and human bone marrow cells. PLoS One 6:e21358. doi: 10.1371/journal.pone.0021358 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465:793–797. doi: 10.1038/nature09135 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, Ellies L, Johnson RS (2012) Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 21:52–65. doi: 10.1016/j.ccr.2011.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20:1315–1320. doi: 10.1038/nm.3707 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846. doi: 10.1038/nature02040 PubMedCrossRefGoogle Scholar
  9. 9.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864. doi: 10.1038/nm1075 PubMedCrossRefGoogle Scholar
  10. 10.
    Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J 81:685–696. doi: 10.1016/s0006-3495(01)75733-5 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356PubMedGoogle Scholar
  12. 12.
    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235. doi: 10.1038/nature11885 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462. doi: 10.1038/nature10783 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136. doi: 10.1038/ni1560 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, Cammenga J, Jonsson JI (2010) Hypoxia mediates low cell-cycle activity and increases the proportion of long-term-reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol 38(301-310), e302. doi: 10.1016/j.exphem.2010.01.005 Google Scholar
  16. 16.
    Forristal CE, Nowlan B, Jacobsen RN, Barbier V, Walkinshaw G, Walkley CR, Winkler IG, Levesque JP (2015) HIF-1alpha is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1alpha. Leukemia 29:1366–1378. doi: 10.1038/leu.2015.8 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417:954–958. doi: 10.1038/nature00821 PubMedCrossRefGoogle Scholar
  18. 18.
    Gezer D, Vukovic M, Soga T, Pollard PJ, Kranc KR (2014) Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic stem cells. Stem Cells 32:1390–1397. doi: 10.1002/stem.1657 PubMedCrossRefGoogle Scholar
  19. 19.
    Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X, Gusscott S, Gracias D, Weng AP (2015) Leukemia stem cells in T-ALL require active Hif1alpha and Wnt signaling. Blood 125:3917–3927. doi: 10.1182/blood-2014-10-609370 PubMedCrossRefGoogle Scholar
  20. 20.
    Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230. doi: 10.1038/nature11926 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Guarnerio J, Coltella N, Ala U, Tonon G, Pandolfi PP, Bernardi R (2014) Bone marrow endosteal mesenchymal progenitors depend on HIF factors for maintenance and regulation of hematopoiesis. Stem Cell Reports 2:794–809. doi: 10.1016/j.stemcr.2014.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Guitart AV, Subramani C, Armesilla-Diaz A, Smith G, Sepulveda C, Gezer D, Vukovic M, Dunn K, Pollard P, Holyoake TL, Enver T, Ratcliffe PJ, Kranc KR (2013) Hif-2alpha is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood 122:1741–1745. doi: 10.1182/blood-2013-02-484923 PubMedCrossRefGoogle Scholar
  23. 23.
    Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, Nicolini FE, Muller-Tidow C, Bhatia R, Brunton VG, Koschmieder S, Holyoake TL (2012) Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 119:1501–1510. doi: 10.1182/blood-2010-12-326843 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Harris RA, Bowker-Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzym Regul 42:249–259CrossRefGoogle Scholar
  25. 25.
    Harrison JS, Rameshwar P, Chang V, Bandari P (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99:394PubMedCrossRefGoogle Scholar
  26. 26.
    Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113:5444–5455. doi: 10.1182/blood-2009-01-201335 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Imanirad P, Solaimani Kartalaei P, Crisan M, Vink C, Yamada-Inagawa T, de Pater E, Kurek D, Kaimakis P, van der Linden R, Speck N, Dzierzak E (2014) HIF1alpha is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Res 12:24–35. doi: 10.1016/j.scr.2013.09.006 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Inaba H, Greaves M, Mullighan CG (2013) Acute lymphoblastic leukaemia. Lancet 381:1943–1955. doi: 10.1016/s0140-6736(12)62187-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, Ema H, Kamijo T, Katoh-Fukui Y, Koseki H, van Lohuizen M, Nakauchi H (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21:843–851. doi: 10.1016/j.immuni.2004.11.004 PubMedCrossRefGoogle Scholar
  30. 30.
    Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472. doi: 10.1016/j.cell.2007.04.019 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kim M, Cooper DD, Hayes SF, Spangrude GJ (1998) Rhodamine-123 staining in hematopoietic stem cells of young mice indicates mitochondrial activation rather than dye efflux. Blood 91:4106–4117PubMedGoogle Scholar
  32. 32.
    Krock BL, Eisinger-Mathason TS, Giannoukos DN, Shay JE, Gohil M, Lee DS, Nakazawa MS, Sesen J, Skuli N, Simon MC (2015) The aryl hydrocarbon receptor nuclear translocator is an essential regulator of murine hematopoietic stem cell viability. Blood 125:3263–3272. doi: 10.1182/blood-2014-10-607267 PubMedCrossRefGoogle Scholar
  33. 33.
    Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471. doi: 10.1101/gad.991402 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Levesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, Nowlan B, Nilsson SK (2007) Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 25:1954–1965. doi: 10.1634/stemcells.2006-0688 PubMedCrossRefGoogle Scholar
  35. 35.
    Lewandowski D, Barroca V, Duconge F, Bayer J, Van Nhieu JT, Pestourie C, Fouchet P, Tavitian B, Romeo PH (2010) In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood 115:443–452. doi: 10.1182/blood-2009-05-222711 PubMedCrossRefGoogle Scholar
  36. 36.
    Licht AH, Muller-Holtkamp F, Flamme I, Breier G (2006) Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 107:584–590. doi: 10.1182/blood-2005-07-3033 PubMedCrossRefGoogle Scholar
  37. 37.
    Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ (2012) Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26:414–421. doi: 10.1038/leu.2011.387 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686. doi: 10.1101/gad.924501 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554. doi: 10.1038/35107085 PubMedCrossRefGoogle Scholar
  40. 40.
    Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G, Ferrando A, Fielding AK, Goldstone AH, Ketterling RP, Litzow MR, Luger SM, McMillan AK, Mansour MR, Rowe JM, Tallman MS, Lazarus HM (2009) T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood 114:5136–5145. doi: 10.1182/blood-2009-08-231217 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337. doi: 10.1038/nature12624 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. doi: 10.1038/nature09262 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Miharada K, Karlsson G, Rehn M, Rorby E, Siva K, Cammenga J, Karlsson S (2011) Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 9:330–344. doi: 10.1016/j.stem.2011.07.016 PubMedCrossRefGoogle Scholar
  44. 44.
    Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T, Takahashi T, Ishii I, Matsubara K, Kabe Y, Uchiyama S, Nagata E, Gadalla MM, Snyder SH, Suematsu M (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci U S A 109:1293–1298. doi: 10.1073/pnas.1119658109 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334. doi: 10.1038/nature12984 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nagasawa T (2006) Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 6:107–116. doi: 10.1038/nri1780 PubMedCrossRefGoogle Scholar
  47. 47.
    Naka K, Muraguchi T, Hoshii T, Hirao A (2008) Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal 10:1883–1894. doi: 10.1089/ars.2008.2114 PubMedCrossRefGoogle Scholar
  48. 48.
    Nakamura-Ishizu A, Takubo K, Fujioka M, Suda T (2014) Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem Biophys Res Commun 454:353–357. doi: 10.1016/j.bbrc.2014.10.095 PubMedCrossRefGoogle Scholar
  49. 49.
    Ng KP, Manjeri A, Lee KL, Huang W, Tan SY, Chuah CT, Poellinger L, Ong ST (2014) Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 123:3316–3326. doi: 10.1182/blood-2013-07-511907 PubMedCrossRefGoogle Scholar
  50. 50.
    Nishida C, Kusubata K, Tashiro Y, Gritli I, Sato A, Ohki-Koizumi M, Morita Y, Nagano M, Sakamoto T, Koshikawa N, Kuchimaru T, Kizaka-Kondoh S, Seiki M, Nakauchi H, Heissig B, Hattori K (2012) MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood 119:5405–5416. doi: 10.1182/blood-2011-11-390849 PubMedCrossRefGoogle Scholar
  51. 51.
    Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A, Silberstein LE (2013) Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15:533–543. doi: 10.1038/ncb2730 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–399. doi: 10.1016/j.immuni.2010.08.017 PubMedCrossRefGoogle Scholar
  53. 53.
    Pallotta I, Lovett M, Rice W, Kaplan DL, Balduini A (2009) Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One 4:e8359. doi: 10.1371/journal.pone.0008359 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Palomaki S, Pietila M, Laitinen S, Pesala J, Sormunen R, Lehenkari P, Koivunen P (2013) HIF-1alpha is upregulated in human mesenchymal stem cells. Stem Cells 31:1902–1909. doi: 10.1002/stem.1435 PubMedCrossRefGoogle Scholar
  55. 55.
    Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104:5431–5436. doi: 10.1073/pnas.0701152104 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Piccoli C, D’Aprile A, Ripoli M, Scrima R, Boffoli D, Tabilio A, Capitanio N (2007) The hypoxia-inducible factor is stabilized in circulating hematopoietic stem cells under normoxic conditions. FEBS Lett 581:3111–3119. doi: 10.1016/j.febslet.2007.05.077 PubMedCrossRefGoogle Scholar
  57. 57.
    Prashad SL, Calvanese V, Yao CY, Kaiser J, Wang Y, Sasidharan R, Crooks G, Magnusson M, Mikkola HK (2015) GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 16:80–87. doi: 10.1016/j.stem.2014.10.020 PubMedCrossRefGoogle Scholar
  58. 58.
    Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, Rankin AL, Yuan J, Kuo CJ, Schipani E, Giaccia AJ (2012) The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149:63–74. doi: 10.1016/j.cell.2012.01.051 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rehn M, Olsson A, Reckzeh K, Diffner E, Carmeliet P, Landberg G, Cammenga J (2011) Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 118:1534–1543. doi: 10.1182/blood-2011-01-332890 PubMedCrossRefGoogle Scholar
  60. 60.
    Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242. doi: 10.1093/cvr/cvq045 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi: 10.1038/35102167 PubMedCrossRefGoogle Scholar
  62. 62.
    Rouault-Pierre K, Lopez-Onieva L, Foster K, Anjos-Afonso F, Lamrissi-Garcia I, Serrano-Sanchez M, Mitter R, Ivanovic Z, de Verneuil H, Gribben J, Taussig D, Rezvani HR, Mazurier F, Bonnet D (2013) HIF-2alpha protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 13:549–563. doi: 10.1016/j.stem.2013.08.011 PubMedCrossRefGoogle Scholar
  63. 63.
    Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079. doi: 10.1038/nature04957 PubMedCrossRefGoogle Scholar
  64. 64.
    Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, Schneider JW, Zhang CC, Sadek HA (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390. doi: 10.1016/j.stem.2010.07.011 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, Zaher W, Mortensen LJ, Alt C, Turcotte R, Yusuf R, Cote D, Vinogradov SA, Scadden DT, Lin CP (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508:269–273. doi: 10.1038/nature13034 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Speth JM, Hoggatt J, Singh P, Pelus LM (2014) Pharmacologic increase in HIF1alpha enhances hematopoietic stem and progenitor homing and engraftment. Blood 123:203–207. doi: 10.1182/blood-2013-07-516336 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Suematsu M, Suganuma K, Kashiwagi S (2003) Mechanistic probing of gaseous signal transduction in microcirculation. Antioxid Redox Signal 5:485–492. doi: 10.1089/152308603768295230 PubMedCrossRefGoogle Scholar
  68. 68.
    Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, Haug JS, Peng L, Zhong XB, Suda T, Li L (2012) Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150:351–365. doi: 10.1016/j.cell.2012.05.041 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P, Oga T, Kaneko S, Suga S, Nokami T, Yoshida J, Mori Y (2011) TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7:701–711. doi: 10.1038/nchembio.640 PubMedCrossRefGoogle Scholar
  70. 70.
    Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7:391–402. doi: 10.1016/j.stem.2010.06.020 PubMedCrossRefGoogle Scholar
  71. 71.
    Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, Goda N, Rahimi Y, Johnson RS, Soga T, Hirao A, Suematsu M, Suda T (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12:49–61. doi: 10.1016/j.stem.2012.10.011 PubMedCrossRefGoogle Scholar
  72. 72.
    Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci U S A 51:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736. doi: 10.1038/nri2395 PubMedCrossRefGoogle Scholar
  74. 74.
    Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411. doi: 10.1016/j.stem.2011.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117:1616–1626. doi: 10.1172/jci31581 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Winkler IG, Barbier V, Wadley R, Zannettino AC, Williams S, Levesque JP (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116:375–385. doi: 10.1182/blood-2009-07-233437 PubMedCrossRefGoogle Scholar
  77. 77.
    Wood SM, Gleadle JM, Pugh CW, Hankinson O, Ratcliffe PJ (1996) The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 271:15117–15123PubMedCrossRefGoogle Scholar
  78. 78.
    Yang DC, Yang MH, Tsai CC, Huang TF, Chen YH, Hung SC (2011) Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 6:e23965. doi: 10.1371/journal.pone.0023965 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhang H, Li H, Xi HS, Li S (2012) HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119:2595–2607. doi: 10.1182/blood-2011-10-387381 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841. doi: 10.1038/nature02041 PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, Ahamed J, Li L (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20:1321–1326. doi: 10.1038/nm.3706 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Stem Cell BiologyResearch Institute, National Center for Global Health and MedicineTokyoJapan

Personalised recommendations