Skip to main content

Advertisement

Log in

The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The discovery of the TRPML subfamily of ion channels has created an exciting niche in the fields of membrane trafficking, signal transduction, autophagy, and metal homeostasis. The TRPML protein subfamily consists of three members, TRPML1, TRPML2, and TRPML3, which are encoded by MCOLN1, MCOLN2, and MCOLN3 genes, respectively. They are non-selective cation channels with six predicted transmembrane domains and intracellular amino- and carboxyl-terminus regions. They localize to the plasma membrane, endosomes, and lysosomes of cells. TRPML1 is associated with the human lysosomal storage disease known as mucolipidosis type IV (MLIV), but TRPML2 and TRPML3 have not been linked with a human disease. Although TRPML1 is expressed in many tissues, TRPML3 is expressed in a varied but limited set of tissues, while TRPML2 has a more limited expression pattern where it is mostly detected in lymphoid and myeloid tissues. This review focuses on TRPML2 because it appears to play an important, yet unrecognized role in the immune system. While the evidence has been mostly indirect, we present and discuss relevant data that strengthen the connection of TRPML2 with cellular immunity. We also discuss the functional redundancy between the TRPML proteins, and how such features could be exploited as a potential therapeutic strategy for MLIV disease. We present evidence that TRPML2 expression may complement certain phenotypic alterations in MLIV cells and briefly examine the challenges of functional complementation. In conclusion, the function of TRPML2 still remains obscure, but emerging data show that it may serve a critical role in immune cell development and inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amir N, Zlotogora J, Bach G (1987) Mucolipidosis type IV: clinical spectrum and natural history. Pediatrics 79:953–959

    PubMed  CAS  Google Scholar 

  2. Anbazhagan K, Rabbind Singh A, Isabelle P, Stella I, Celine AD, Bissac E, Bertrand B, Remy N, Naomi T, Vincent F, Rochette J, Lassoued K (2013) Human pre-B cell receptor signal transduction: evidence for distinct roles of PI3kinase and MAP-kinase signalling pathways. Immun Inflammation Dis 1:26–36. doi:10.1002/iid3.4

    Article  CAS  Google Scholar 

  3. Antony P, Petro JB, Carlesso G, Shinners NP, Lowe J, Khan WN (2003) B cell receptor directs the activation of NFAT and NF-kappaB via distinct molecular mechanisms. Exp Cell Res 291:11–24

    Article  PubMed  CAS  Google Scholar 

  4. Asai K, Kitaura J, Kawakami Y, Yamagata N, Tsai M, Carbone DP, Liu FT, Galli SJ, Kawakami T (2001) Regulation of mast cell survival by IgE. Immunity 14:791–800

    Article  PubMed  CAS  Google Scholar 

  5. Bach G, Cohen MM, Kohn G (1975) Abnormal ganglioside accumulation in cultured fibroblasts from patients with mucolipidosis IV. Biochem Biophys Res Commun 66:1483–1490

    Article  PubMed  CAS  Google Scholar 

  6. Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal abeta in preclinical models of HIV infection. J Neurosci 34:11485–11503. doi:10.1523/JNEUROSCI.0210-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123. doi:10.1038/79095

    Article  PubMed  CAS  Google Scholar 

  8. Bargal R, Goebel HH, Latta E, Bach G (2002) Mucolipidosis IV: novel mutation and diverse ultrastructural spectrum in the skin. Neuropediatrics 33:199–202. doi:10.1055/s-2002-34496

    Article  PubMed  CAS  Google Scholar 

  9. Barton GM, Kagan JC (2009) A cell biological view of toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 9:535–542. doi:10.1038/nri2587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, Borsani G (2000) Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet 67:1110–1120. doi:10.1016/S0002-9297(07)62941-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Bradding P, Walls AF, Holgate ST (2006) The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol 117:1277–1284. doi:10.1016/j.jaci.2006.02.039

    Article  PubMed  CAS  Google Scholar 

  12. Brunner C, Muller B, Wirth T (2005) Bruton’s tyrosine kinase is involved in innate and adaptive immunity. Histol Histopathol 20:945–955

    PubMed  CAS  Google Scholar 

  13. Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121:1121–1132

    Article  PubMed  CAS  Google Scholar 

  14. Carmosino M, Procino G, Casavola V, Svelto M, Valenti G (2000) The cultured human gastric cells HGT-1 express the principal transporters involved in acid secretion. Pflugers Arch 440:871–880

    Article  PubMed  CAS  Google Scholar 

  15. Castiglioni AJ, Remis NN, Flores EN, Garcia-Anoveros J (2011) Expression and vesicular localization of mouse Trpml3 in stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons. J Comp Neurol 519:1095–1114. doi:10.1002/cne.22554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Chatterjee S, Mayor S (2001) The GPI-anchor and protein sorting. Cell Mol Life Sci 58:1969–1987

    Article  PubMed  CAS  Google Scholar 

  17. Choi S, Kim HJ (2014) The Ca2+ channel TRPML3 specifically interacts with the mammalian ATG8 homologue GATE16 to regulate autophagy. Biochem Biophys Res Commun 443:56–61. doi:10.1016/j.bbrc.2013.11.044

    Article  PubMed  CAS  Google Scholar 

  18. Cobaleda C, Schebesta A, Delogu A, Busslinger M (2007) Pax5: the guardian of B cell identity and function. Nat Immunol 8:463–470. doi:10.1038/ni1454

    Article  PubMed  CAS  Google Scholar 

  19. Coblentz J, St Croix C, Kiselyov K (2014) Loss of TRPML1 promotes production of reactive oxygen species: is oxidative damage a factor in mucolipidosis type IV? Biochem J 457:361–368. doi:10.1042/BJ20130647

    Article  PubMed  CAS  Google Scholar 

  20. Condamine T, Le Texier L, Howie D, Lavault A, Hill M, Halary F, Cobbold S, Waldmann H, Cuturi MC, Chiffoleau E (2010) Tmem176B and Tmem176A are associated with the immature state of dendritic cells. J Leukoc Biol 88:507–515. doi:10.1189/jlb.1109738

    Article  PubMed  CAS  Google Scholar 

  21. Cuajungco MP, Basilio LC, Silva J, Hart T, Tringali J, Chen CC, Biel M, Grimm C (2014) Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic 15:1247–1265. doi:10.1111/tra.12205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Cuajungco MP, Podevin W, Valluri VK, Bui Q, Nguyen VH, Taylor K (2012) Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. Acta Histochem 114:705–712. doi:10.1016/j.acthis.2011.12.006

    Article  PubMed  CAS  Google Scholar 

  23. Cuajungco MP, Samie MA (2008) The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 457:463–473. doi:10.1007/s00424-008-0523-4

    Article  PubMed  CAS  Google Scholar 

  24. Curcio-Morelli C, Zhang P, Venugopal B, Charles FA, Browning MF, Cantiello HF, Slaugenhaupt SA (2010) Functional multimerization of mucolipin channel proteins. J Cell Physiol 222:328–335. doi:10.1002/jcp.21956

    Article  PubMed  CAS  Google Scholar 

  25. Decker T, Pasca di Magliano M, McManus S, Sun Q, Bonifer C, Tagoh H, Busslinger M (2009) Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30:508–520. doi:10.1016/j.immuni.2009.01.012

    Article  PubMed  CAS  Google Scholar 

  26. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A 99:14994–14999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Donaldson JG (2003) Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J Biol Chem 278:41573–41576. doi:10.1074/jbc.R300026200

    Article  PubMed  CAS  Google Scholar 

  28. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996. doi:10.1038/nature07311

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38. doi:10.1038/ncomms1037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Doyle SL, Jefferies CA, Feighery C, O'Neill LA (2007) Signaling by toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem 282:36953–36960. doi:10.1074/jbc.M707682200

    Article  PubMed  CAS  Google Scholar 

  31. Eichelsdoerfer JL, Evans JA, Slaugenhaupt SA, Cuajungco MP (2010) Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem 285:34304–34308. doi:10.1074/jbc.C110.165480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Fiorini M, Franceschini R, Soresina A, Schumacher RF, Ugazio AG, Rossi P, Plebani A, Notarangelo LD (2004) BTK: 22 novel and 25 recurrent mutations in European patients with X-linked agammaglobulinemia. Hum Mutat 23:286. doi:10.1002/humu.9219

    Article  PubMed  Google Scholar 

  33. Flores EN, Garcia-Anoveros J (2011) TRPML2 and the evolution of mucolipins. Adv Exp Med Biol 704:221–228. doi:10.1007/978-94-007-0265-3_12

    Article  PubMed  CAS  Google Scholar 

  34. Gagliardi MC, Finocchi A, Orlandi P, Cursi L, Cancrini C, Moschese V, Miyawaki T, Rossi P (2003) Bruton’s tyrosine kinase defect in dendritic cells from X-linked agammaglobulinaemia patients does not influence their differentiation, maturation and antigen-presenting cell function. Clin Exp Immunol 133:115–122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Garcia-Anoveros J, Wiwatpanit T (2014) TRPML2 and mucolipin evolution. Handb Exp Pharmacol 222:647–658. doi:10.1007/978-3-642-54215-2_25

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh HS, Cisse B, Bunin A, Lewis KL, Reizis B (2010) Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33:905–916. doi:10.1016/j.immuni.2010.11.023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Gottschling S, Jauch A, Kuner R, Herpel E, Mueller-Decker K, Schnabel PA, Xu EC, Muley T, Sultmann H, Bender C, Granzow M, Efferth T, Hoffmann H, Dienemann H, Herth FJ, Meister M (2012) Establishment and comparative characterization of novel squamous cell non-small cell lung cancer cell lines and their corresponding tumor tissue. Lung Cancer 75:45–57. doi:10.1016/j.lungcan.2011.05.020

    Article  PubMed  Google Scholar 

  38. Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O'Neill LA (2006) MyD88 adapter-like (Mal) is phosphorylated by Bruton’s tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem 281:10489–10495. doi:10.1074/jbc.M508892200

    Article  PubMed  CAS  Google Scholar 

  39. Grimm C, Cuajungco MP, van Aken AF, Schnee M, Jors S, Kros CJ, Ricci AJ, Heller S (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci U S A 104:19583–19588. doi:10.1073/pnas.0709846104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Grimm C, Jors S, Guo Z, Obukhov AG, Heller S (2012) Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J Biol Chem 287:22701–22708. doi:10.1074/jbc.M112.368876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Grimm C, Jors S, Saldanha SA, Obukhov AG, Pan B, Oshima K, Cuajungco MP, Chase P, Hodder P, Heller S (2010) Small molecule activators of TRPML3. Chem Biol 17:135–148. doi:10.1016/j.chembiol.2009.12.016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Guo B, Kato RM, Garcia-Lloret M, Wahl MI, Rawlings DJ (2000) Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13:243–253

    Article  PubMed  CAS  Google Scholar 

  43. Hata D, Kawakami Y, Inagaki N, Lantz CS, Kitamura T, Khan WN, Maeda-Yamamoto M, Miura T, Han W, Hartman SE, Yao L, Nagai H, Goldfeld AE, Alt FW, Galli SJ, Witte ON, Kawakami T (1998) Involvement of Bruton’s tyrosine kinase in FcepsilonRI-dependent mast cell degranulation and cytokine production. J Exp Med 187:1235–1247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Hata D, Kitaura J, Hartman SE, Kawakami Y, Yokota T, Kawakami T (1998) Bruton’s tyrosine kinase-mediated interleukin-2 gene activation in mast cells. Dependence on the c-Jun N-terminal kinase activation pathway. J Biol Chem 273:10979–10987

    Article  PubMed  CAS  Google Scholar 

  45. Hazenbos WL, Wu P, Eastham-Anderson J, Kinoshita T, Brown EJ (2011) Impaired FcepsilonRI stability, signaling, and effector functions in murine mast cells lacking glycosylphosphatidylinositol-anchored proteins. Blood 118:4377–4383. doi:10.1182/blood-2011-02-338053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Herzog S, Reth M, Jumaa H (2009) Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9:195–205. doi:10.1038/nri2491

    Article  PubMed  CAS  Google Scholar 

  47. Holmes ML, Pridans C, Nutt SL (2008) The regulation of the B-cell gene expression programme by Pax5. Immunol Cell Biol 86:47–53. doi:10.1038/sj.icb.7100134

    Article  PubMed  CAS  Google Scholar 

  48. Ishii T (2015) Germline genome-editing research and its socioethical implications. Trends Mol Med 21:473–481. doi:10.1016/j.molmed.2015.05.006

    Article  PubMed  Google Scholar 

  49. Iyer AS, Morales JL, Huang W, Ojo F, Ning G, Wills E, Baines JD, August A (2011) Absence of Tec family kinases interleukin-2 inducible T cell kinase (Itk) and Bruton’s tyrosine kinase (Btk) severely impairs Fc epsilonRI-dependent mast cell responses. J Biol Chem 286:9503–9513. doi:10.1074/jbc.M110.165613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, Walch E, Wirth T, O'Neill LA (2003) Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 278:26258–26264. doi:10.1074/jbc.M301484200

    Article  PubMed  CAS  Google Scholar 

  51. Jennings JJ Jr, Zhu JH, Rbaibi Y, Luo X, Chu CT, Kiselyov K (2006) Mitochondrial aberrations in mucolipidosis type IV. J Biol Chem 281:39041–39050

    Article  PubMed  CAS  Google Scholar 

  52. Kalesnikoff J, Huber M, Lam V, Damen JE, Zhang J, Siraganian RP, Krystal G (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14:801–811

    Article  PubMed  CAS  Google Scholar 

  53. Karacsonyi C, Miguel AS, Puertollano R (2007) Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic 8:1404–1414. doi:10.1111/j.1600-0854.2007.00619.x

    Article  PubMed  CAS  Google Scholar 

  54. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5:1061–1068. doi:10.1038/ni1118

    Article  PubMed  CAS  Google Scholar 

  55. Kawakami Y, Yao L, Miura T, Tsukada S, Witte ON, Kawakami T (1994) Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon Fc epsilon RI cross-linking. Mol Cell Biol 14:5108–5113. PMID: Pmc359029

  56. Kerner JD, Appleby MW, Mohr RN, Chien S, Rawlings DJ, Maliszewski CR, Witte ON, Perlmutter RM (1995) Impaired expansion of mouse B cell progenitors lacking Btk. Immunity 3:301–312

    Article  PubMed  CAS  Google Scholar 

  57. Khan WN, Alt FW, Gerstein RM, Malynn BA, Larsson I, Rathbun G, Davidson L, Muller S, Kantor AB, Herzenberg LA et al (1995) Defective B cell development and function in Btk-deficient mice. Immunity 3:283–299

    Article  PubMed  CAS  Google Scholar 

  58. Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S (2007) Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem 282:36138–36142. doi:10.1074/jbc.C700190200

    Article  PubMed  CAS  Google Scholar 

  59. Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S (2009) The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic 10:1157–1167. doi:10.1111/j.1600-0854.2009.00924.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Kim HJ, Yamaguchi S, Li Q, So I, Muallem S (2010) Properties of the TRPML3 channel pore and its stable expansion by the Varitint-Waddler-causing mutation. J Biol Chem 285:16513–16520. doi:10.1074/jbc.M109.078204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Kimberley FC, Sivasankar B, Paul Morgan B (2007) Alternative roles for CD59. Mol Immunol 44:73–81. doi:10.1016/j.molimm.2006.06.019

    Article  PubMed  CAS  Google Scholar 

  62. Kraft S, Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7:365–378. doi:10.1038/nri2072

    Article  PubMed  CAS  Google Scholar 

  63. Kuehn HS, Swindle EJ, Kim MS, Beaven MA, Metcalfe DD, Gilfillan AM (2008) The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. J Immunol 181:7706–7712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Kukic I, Lee JK, Coblentz J, Kelleher SL, Kiselyov K (2013) Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochem J 451:155–163. doi:10.1042/BJ20121506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Laboisse CL, Augeron C, Couturier-Turpin MH, Gespach C, Cheret AM, Potet F (1982) Characterization of a newly established human gastric cancer cell line HGT-1 bearing histamine H2-receptors. Cancer Res 42:1541–1548

    PubMed  CAS  Google Scholar 

  66. LaPlante JM, Sun M, Falardeau J, Dai D, Brown EM, Slaugenhaupt SA, Vassilev PM (2006) Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol Genet Metab 89:339–348

    Article  PubMed  CAS  Google Scholar 

  67. Lee KP, Nair AV, Grimm C, van Zeeland F, Heller S, Bindels RJ, Hoenderop JG (2010) A helix-breaking mutation in the epithelial Ca(2+) channel TRPV5 leads to reduced Ca(2+)-dependent inactivation. Cell Calcium 48:275–287. doi:10.1016/j.ceca.2010.09.007

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Lee KG, Xu S, Kang ZH, Huo J, Huang M, Liu D, Takeuchi O, Akira S, Lam KP (2012) Bruton’s tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci U S A 109:5791–5796. doi:10.1073/pnas.1119238109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Lev S, Zeevi DA, Frumkin A, Offen-Glasner V, Bach G, Minke B (2010) Constitutive activity of the human TRPML2 channel induces cell degeneration. J Biol Chem 285:2771–2782. doi:10.1074/jbc.M109.046508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Li X, Saitoh SI, Shibata T, Tanimura N, Fukui R, Miyake K (2014) Mucolipin 1 positively regulates TLR7 responses in dendritic cells by facilitating RNA transportation to lysosomes. Int Immunol 27:83–94. doi:10.1093/intimm/dxu086

    Article  PubMed  CAS  Google Scholar 

  71. Liang Y, Tedder TF (2001) Identification of a CD20-, FcepsilonRIbeta-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics 72:119–127. doi:10.1006/geno.2000.6472

    Article  PubMed  CAS  Google Scholar 

  72. Lin S, Cicala C, Scharenberg AM, Kinet JP (1996) The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 85:985–995

    Article  PubMed  CAS  Google Scholar 

  73. Lindvall JM, Blomberg KE, Wennborg A, Smith CI (2005) Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk-defective B-cells. Cell Immunol 235:46–55. doi:10.1016/j.cellimm.2005.07.001

    Article  PubMed  CAS  Google Scholar 

  74. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306. doi:10.1146/annurev.immunol.23.021704.115633

    Article  PubMed  CAS  Google Scholar 

  75. Louvet C, Chiffoleau E, Heslan M, Tesson L, Heslan JM, Brion R, Beriou G, Guillonneau C, Khalife J, Anegon I, Cuturi MC (2005) Identification of a new member of the CD20/FcepsilonRIbeta family overexpressed in tolerated allografts. Am J Transplant 5:2143–2153. doi:10.1111/j.1600-6143.2005.01007.x

    Article  PubMed  CAS  Google Scholar 

  76. Lurton J, Rose TM, Raghu G, Narayanan AS (1999) Isolation of a gene product expressed by a subpopulation of human lung fibroblasts by differential display. Am J Respir Cell Mol Biol 20:327–331

    Article  PubMed  CAS  Google Scholar 

  77. Mandel EM, Grosschedl R (2010) Transcription control of early B cell differentiation. Curr Opin Immunol 22:161–167. doi:10.1016/j.coi.2010.01.010

    Article  PubMed  CAS  Google Scholar 

  78. Martina JA, Lelouvier B, Puertollano R (2009) The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10:1143–1156. doi:10.1111/j.1600-0854.2009.00935.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. McHeyzer-Williams LJ, Malherbe LP, McHeyzer-Williams MG (2006) Checkpoints in memory B-cell evolution. Immunol Rev 211:255–268. doi:10.1111/j.0105-2896.2006.00397.x

    Article  PubMed  CAS  Google Scholar 

  80. McHeyzer-Williams M, Okitsu S, Wang N, McHeyzer-Williams L (2012) Molecular programming of B cell memory. Nat Rev Immunol 12:24–34. doi:10.1038/nri3128

    CAS  Google Scholar 

  81. Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, Christensson B, Berglof A, Vihinen M, Nore BF, Smith CI (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228:58–73. doi:10.1111/j.1600-065X.2008.00741.x

    Article  PubMed  CAS  Google Scholar 

  82. Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, Garcia-Anoveros J (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci U S A 105:353–358. doi:10.1073/pnas.0707963105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Nakajima H, Takenaka M, Kaimori JY, Nagasawa Y, Kosugi A, Kawamoto S, Imai E, Hori M, Okubo K (2002) Gene expression profile of renal proximal tubules regulated by proteinuria. Kidney Int 61:1577–1587. doi:10.1046/j.1523-1755.2002.00300.x

    Article  PubMed  CAS  Google Scholar 

  84. Nussenzweig MC (1998) Immune receptor editing: revise and select. Cell 95:875–878

    Article  PubMed  CAS  Google Scholar 

  85. Nutt SL, Heavey B, Rolink AG, Busslinger M (1999) Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401:556–562. doi:10.1038/44076

    Article  PubMed  CAS  Google Scholar 

  86. Pryor PR, Reimann F, Gribble FM, Luzio JP (2006) Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic 7:1388–1398

    Article  PubMed  CAS  Google Scholar 

  87. Remis NN, Wiwatpanit T, Castiglioni AJ, Flores EN, Cantu JA, Garcia-Anoveros J (2014) Mucolipin co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning. PLoS Genet 10, e1004833. doi:10.1371/journal.pgen.1004833

    Article  PubMed  PubMed Central  Google Scholar 

  88. Samie MA, Grimm C, Evans JA, Curcio-Morelli C, Heller S, Slaugenhaupt SA, Cuajungco MP (2009) The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Arch 459:79–91. doi:10.1007/s00424-009-0716-5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Samie M, Wang X, Zhang X, Goschka A, Li X, Cheng X, Gregg E, Azar M, Zhuo Y, Garrity AG, Gao Q, Slaugenhaupt S, Pickel J, Zolov SN, Weisman LS, Lenk GM, Titus S, Bryant-Genevier M, Southall N, Juan M, Ferrer M, Xu H (2013) A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell 26:511–524. doi:10.1016/j.devcel.2013.08.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Sandle GI, Fraser G, Fogg K, Warhurst G (1993) Properties of a potassium channel in cultured human gastric cells (HGT-1) possessing specific omeprazole binding sites. Gut 34:1331–1338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Sandle GI, Fraser G, Long S, Warhurst G (1990) A cAMP-activated chloride channel in the plasma membrane of cultured human gastric cells (HGT-1). Pflugers Arch 417:259–263

    Article  PubMed  CAS  Google Scholar 

  92. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–485. doi:10.1038/nature09907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci U S A 100:6157–6162. doi:10.1073/pnas.1031598100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci U S A 96:2414–2419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Sochorova K, Horvath R, Rozkova D, Litzman J, Bartunkova J, Sediva A, Spisek R (2007) Impaired Toll-like receptor 8-mediated IL-6 and TNF-alpha production in antigen-presenting cells from patients with X-linked agammaglobulinemia. Blood 109:2553–2556. doi:10.1182/blood-2006-07-037960

    Article  PubMed  CAS  Google Scholar 

  96. Song Y, Dayalu R, Matthews SA, Scharenberg AM (2006) TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes. Eur J Cell Biol 85:1253–1264

    Article  PubMed  CAS  Google Scholar 

  97. Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281:7294–7301

    Article  PubMed  CAS  Google Scholar 

  98. Spooner E, McLaughlin BM, Lepow T, Durns TA, Randall J, Upchurch C, Miller K, Campbell EM, Fares H (2013) Systematic screens for proteins that interact with the mucolipidosis type IV protein TRPML1. PLoS One 8, e56780. doi:10.1371/journal.pone.0056780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Steinman RM, Idoyaga J (2010) Features of the dendritic cell lineage. Immunol Rev 234:5–17. doi:10.1111/j.0105-2896.2009.00888.x

    Article  PubMed  CAS  Google Scholar 

  100. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9:2471–2478

    Article  PubMed  CAS  Google Scholar 

  101. Takumida M, Anniko M (2010) Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear. Acta Otolaryngol 130:196–203. doi:10.3109/00016480903013593

    Article  PubMed  CAS  Google Scholar 

  102. Taneichi H, Kanegane H, Sira MM, Futatani T, Agematsu K, Sako M, Kaneko H, Kondo N, Kaisho T, Miyawaki T (2008) Toll-like receptor signaling is impaired in dendritic cells from patients with X-linked agammaglobulinemia. Clin Immunol 126:148–154

    Article  PubMed  CAS  Google Scholar 

  103. Tellez-Nagel I, Rapin I, Iwamoto T, Johnson AB, Norton WT, Nitowsky H (1976) Mucolipidosis IV. Clinical, ultrastructural, histochemical, and chemical studies of a case, including a brain biopsy. Arch Neurol 33:828–835

    Article  PubMed  CAS  Google Scholar 

  104. Thompson EG, Schaheen L, Dang H, Fares H (2007) Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol 8:54. doi:10.1186/1471-2121-8-54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Treusch S, Knuth S, Slaugenhaupt SA, Goldin E, Grant BD, Fares H (2004) Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci U S A 101:4483–4488

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  106. Valadez JA, Cuajungco MP (2015) PAX5 is the transcriptional activator of mucolipin-2 (MCOLN2) gene. Gene 555:194–202. doi:10.1016/j.gene.2014.11.003

    Article  PubMed  CAS  Google Scholar 

  107. Venkatachalam K, Hofmann T, Montell C (2006) Lysosomal localization of TRPML3 depends on TRPML2 and the mucolipidosis-associated protein TRPML1. J Biol Chem 281:17517–17527

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. Venkatachalam K, Long AA, Elsaesser R, Nikolaeva D, Broadie K, Montell C (2008) Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135:838–851. doi:10.1016/j.cell.2008.09.041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Vergarajauregui S, Martina JA, Puertollano R (2009) Identification of the penta-EF-hand protein ALG-2 as a Ca2+-dependent interactor of mucolipin-1. J Biol Chem 284:36357–36366. doi:10.1074/jbc.M109.047241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  110. Vergarajauregui S, Martina JA, Puertollano R (2011) LAPTMs regulate lysosomal function and interact with mucolipin 1: new clues for understanding mucolipidosis type IV. J Cell Sci 124:459–468. doi:10.1242/jcs.076240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Vergarajauregui S, Puertollano R (2006) Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic 7:337–353

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. von Bubnoff D, Novak N, Kraft S, Bieber T (2003) The central role of FcepsilonRI in allergy. Clin Exp Dermatol 28:184–187

    Article  Google Scholar 

  113. Wang Y, Han KJ, Pang XW, Vaughan HA, Qu W, Dong XY, Peng JR, Zhao HT, Rui JA, Leng XS, Cebon J, Burgess AW, Chen WF (2002) Large scale identification of human hepatocellular carcinoma-associated antigens by autoantibodies. J Immunol 169:1102–1109

    Article  PubMed  CAS  Google Scholar 

  114. Werling D, Jungi TW (2003) TOLL-like receptors linking innate and adaptive immune response. Vet Immunol Immunopathol 91:1–12

    Article  PubMed  CAS  Google Scholar 

  115. Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc Natl Acad Sci U S A 104:18321–18326. doi:10.1073/pnas.0709096104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  116. Zeevi DA, Frumkin A, Offen-Glasner V, Kogot-Levin A, Bach G (2009) A potentially dynamic lysosomal role for the endogenous TRPML proteins. J Pathol 219:153–162. doi:10.1002/path.2587

    Article  PubMed  CAS  Google Scholar 

  117. Zeevi DA, Lev S, Frumkin A, Minke B, Bach G (2010) Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci 123:3112–3124. doi:10.1242/jcs.067330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Zou J, Hu B, Arpag S, Yan Q, Hamilton A, Zeng YS, Vanoye CG, Li J (2015) Reactivation of lysosomal Ca2+ efflux rescues abnormal lysosomal storage in FIG 4-deficient cells. J Neurosci 35:6801–6812. doi:10.1523/JNEUROSCI.4442-14.2015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  119. Zuccolo J, Bau J, Childs SJ, Goss GG, Sensen CW, Deans JP (2010) Phylogenetic analysis of the MS4A and TMEM176 gene families. PLoS One 5, e9369. doi:10.1371/journal.pone.0009369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zuccolo J, Deng L, Unruh TL, Sanyal R, Bau JA, Storek J, Demetrick DJ, Luider JM, Auer-Grzesiak IA, Mansoor A, Deans JP (2013) Expression of MS4A and TMEM176 genes in human B lymphocytes. Front Immunol 4:195. doi:10.3389/fimmu.2013.00195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Sean Murray (CSU Northridge) for reading and critiquing this manuscript. We thank Dr. Ehud Goldin (NIH/NHGRI) for providing WT and TRPML1-KD HGT-1 gastric adenocarcinoma cells. JV acknowledges research awards from CSUF EPOCHS Program, CSUFs RCATT Office, and the CSU Statewide Student Research Competition. MPC and JS acknowledge support from the National Institutes of Health (NIH) Maximizing Access to Research Careers (MARC) U*STAR Program (NIH T34-GM008612-20) and the Louis Stokes Alliance for Minority Participation (NSF HRD-0802628) research fellowship.

Funding

This work was funded by grants to MPC from the NIH AREA R15-NS070774-01, NIH MARC U*STAR Program T34-GM008612-20, National Science Foundation MCB-0920127, and Cal State Fullerton Intramural Grants program.

Conflict of interest

The authors declare no conflict of interest concerning this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Math P. Cuajungco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuajungco, M.P., Silva, J., Habibi, A. et al. The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch - Eur J Physiol 468, 177–192 (2016). https://doi.org/10.1007/s00424-015-1732-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1732-2

Keywords

Navigation