Advertisement

Pflügers Archiv - European Journal of Physiology

, Volume 467, Issue 12, pp 2461–2472 | Cite as

Ca2+ clearance by plasmalemmal NCLX, Li+-permeable Na+/Ca2+ exchanger, is required for the sustained exocytosis in rat insulinoma INS-1 cells

  • Young-Eun Han
  • Shin-Young Ryu
  • Sun-Hyun Park
  • Kyu-Hee Lee
  • Suk-Ho Lee
  • Won-Kyung HoEmail author
Ion channels, receptors and transporters

Abstract

Na+/Ca2+ exchangers are key players for Ca2+ clearance in pancreatic β-cells, but their molecular determinants and roles in insulin secretion are not fully understood. In the present study, we newly discovered that the Li+-permeable Na+/Ca2+ exchangers (NCLX), which were known as mitochondrial Na+/Ca2+ exchangers, contributed to the Na+-dependent Ca2+ movement across the plasma membrane in rat INS-1 insulinoma cells. Na+/Ca2+ exchange activity by NCLX was comparable to that by the Na+/Ca2+ exchanger, NCX. We also confirmed the presence of NCLX proteins on the plasma membrane using immunocytochemistry and cell surface biotinylation experiments. We further investigated the role of NCLX on exocytosis function by measuring the capacitance increase in response to repetitive depolarization. Small interfering (si)RNA-mediated downregulation of NCLX did not affect the initial exocytosis, but significantly suppressed sustained exocytosis and recovery of exocytosis. XIP (NCX inhibitory peptide) or Na+ replacement for inhibiting Na+-dependent Ca2+ clearance also selectively suppressed sustained exocytosis. Consistent with the idea that sustained exocytosis requires ATP-dependent vesicle recruitment, mitochondrial function, assessed by mitochondrial membrane potential (ΔΨ), was impaired by siNCLX or XIP. However, depolarization-induced exocytosis was hardly affected by changes in intracellular Na+ concentration, suggesting a negligible contribution of mitochondrial Na+/Ca2+ exchanger. Taken together, our data indicate that Na+/Ca2+ exchanger-mediated Ca2+ clearance mediated by NCLX and NCX is crucial for optimizing mitochondrial function, which in turn contributes to vesicle recruitment for sustained exocytosis in pancreatic β-cells.

Keywords

Ca2+ transport Na+/Ca2+ exchanger Exocytosis Capacitance Pancreatic β-cell 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant (No. 2014051826) funded by the Korea government Ministry of Science, ICT and Future Planning (MSIP)

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

424_2015_1715_MOESM1_ESM.pdf (260 kb)
ESM 1 (PDF 259 kb)

References

  1. 1.
    Ashcroft FM, Proks P, Smith PA, Ämmälä C, Bokvist K, Rorsman P (1994) Stimulus-secretion coupling in pancreatic β cells. J Cell Biochem 55:54–65. doi: 10.1002/jcb.240550007 CrossRefPubMedGoogle Scholar
  2. 2.
    Barg S, Eliasson L, Renström E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse β-cells. Diabetes 51:S74–S82. doi: 10.2337/diabetes.51.2007.S74 CrossRefPubMedGoogle Scholar
  3. 3.
    Barg S, Huang P, Eliasson L, Nelson DJ, Obermüller S, Rorsman P, Thévenod F, Renström E (2001) Priming of insulin granules for exocytosis by granular Cl uptake and acidification. J Cell Sci 114:2145–2154PubMedGoogle Scholar
  4. 4.
    Barg S, Ma X, Eliasson L, Galvanovskis J, Gopel SO, Obermuller S, Platzer J, Renstrom E, Trus M, Atlas D, Striessnig J, Rorsman P (2001) Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells. Biophys J 81:3308–3323. doi: 10.1016/s0006-3495(01)75964-4 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155PubMedGoogle Scholar
  6. 6.
    Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMedGoogle Scholar
  7. 7.
    Cai X, Lytton J (2004) Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J Biol Chem 279:5867–5876. doi: 10.1074/jbc.M310908200 CrossRefPubMedGoogle Scholar
  8. 8.
    Crompton M, Heid I (1978) The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91:599–608. doi: 10.1111/j.1432-1033.1978.tb12713.x CrossRefPubMedGoogle Scholar
  9. 9.
    Curry DL, Bennett L, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83:572–584. doi: 10.1210/endo-83-3-572 CrossRefPubMedGoogle Scholar
  10. 10.
    Deval E, Raymond G, Cognard C (2002) Na+–Ca2+ exchange activity in rat skeletal myotubes: effect of lithium ions. Cell Calcium 31:37–44. doi: 10.1054/ceca.2001.0254 CrossRefPubMedGoogle Scholar
  11. 11.
    Eliasson L, Renström E, Ding W-G, Proks P, Rorsman P (1997) Rapid ATP-dependent priming of secretory granules precedes Ca2+-induced exocytosis in mouse pancreatic B-cells. J Physiol 503:399–412. doi: 10.1111/j.1469-7793.1997.399bh.x PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Gembal M, Gilon P, Henquin JC (1992) Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest 89:1288–1295. doi: 10.1172/jci115714 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Hamming KS, Riedel MJ, Soliman D, Matemisz LC, Webster NJ, Searle GJ, MacDonald PE, Light PE (2008) Splice variant-dependent regulation of β-cell sodium-calcium exchange by acyl-coenzyme As. Mol Endocrinol 22:2293–2306. doi: 10.1210/me.2008-0053 CrossRefPubMedGoogle Scholar
  14. 14.
    Henquin J-C, Ishiyama N, Nenquin M, Ravier MA, Jonas J-C (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51:S60–S67. doi: 10.2337/diabetes.51.2007.S60 CrossRefPubMedGoogle Scholar
  15. 15.
    Kang L, He Z, Xu P, Fan J, Betz A, Brose N, Xu T (2006) Munc13-1 is required for the sustained release of insulin from pancreatic β cells. Cell Metab 3:463–468. doi: 10.1016/j.cmet.2006.04.012 CrossRefPubMedGoogle Scholar
  16. 16.
    Kanno T, Ma X, Barg S, Eliasson L, Galvanovskis J, Gopel S, Larsson M, Renstrom E, Rorsman P (2004) Large dense-core vesicle exocytosis in pancreatic b-cells monitored by capacitance measurements. Methods 33:302–311. doi: 10.1016/j.ymeth.2004.01.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Lim A, Park S-H, Sohn J-W, Jeon J-H, Park J-H, Song D-K, Lee S-H, Ho W-K (2009) Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic β-cells. Diabetes 58:2813–2819. doi: 10.2337/db09-0600 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Luciani DS, Ao P, Hu X, Warnock GL, Johnson JD (2007) Voltage-gated Ca2+ influx and insulin secretion in human and mouse β-cells are impaired by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157. Eur J Pharmacol. doi: 10.1016/j.ejphar.2007.07.055 Google Scholar
  19. 19.
    Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406:365–382. doi: 10.1042/bj20070619 CrossRefPubMedGoogle Scholar
  20. 20.
    Nita II, Hershfinkel M, Fishman D, Ozeri E, Rutter GA, Sensi SL, Khananshvili D, Lewis EC, Sekler I (2012) The mitochondrial Na+/Ca2+ exchanger upregulates glucose dependent Ca2+ signalling linked to insulin secretion. PLoS One 7, e46649. doi: 10.1371/journal.pone.0046649 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Nita II, Hershfinkel M, Lewis EC, Sekler I (2015) A crosstalk between Na+ channels, Na+/K+ pump and mitochondrial Na+ transporters controls glucose-dependent cytosolic and mitochondrial Na+ signals. Cell Calcium 57:69–75. doi: 10.1016/j.ceca.2014.12.007 CrossRefPubMedGoogle Scholar
  22. 22.
    Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I (2004) Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J Biol Chem 279:25234–25240. doi: 10.1074/jbc.M401229200 CrossRefPubMedGoogle Scholar
  23. 23.
    Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441. doi: 10.1073/pnas.0908099107 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Park S-H, Ryu S-Y, Yu W-J, Han YE, Ji Y-S, Oh K, Sohn J-W, Lim A, Jeon J-P, Lee H, Lee K-H, Lee S-H, Berggren P-O, Jeon J-H, Ho W-K (2013) Leptin promotes KATP channel trafficking by AMPK signaling in pancreatic b-cells. Proc Natl Acad Sci U S A 110:12673–12678. doi: 10.1073/pnas.1216351110 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Rorsman P, Eliasson L, Renström E, Gromada J, Barg S, Göpel S (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77PubMedGoogle Scholar
  26. 26.
    Van Eylen F, Lebeau C, Albuquerque-Silva J, Herchuelz A (1998) Contribution of Na/Ca exchange to Ca2+ outflow and entry in the rat pancreatic β-cell: studies with antisense oligonucleotides. Diabetes 47:1873–1880. doi: 10.2337/diabetes.47.12.1873 CrossRefPubMedGoogle Scholar
  27. 27.
    Van Eylen F, Svoboda M, Herchuelz A (1997) Identification, expression pattern and potential activity of Na/Ca exchanger isoforms in rat pancreatic B-cells. Cell Calcium 21:185–193. doi: 10.1016/S0143-4160(97)90043-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Voronina SG, Barrow SL, Gerasimenko OV, Petersen OH, Tepikin AV (2004) Effects of secretagogues and bile acids on mitochondrial membrane potential of pancreatic acinar cells: comparison of different modes of evaluating ΔΨm. J Biol Chem 279:27327–27338. doi: 10.1074/jbc.M311698200 CrossRefPubMedGoogle Scholar
  29. 29.
    Wiederkehr A, Wollheim CB (2008) Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic β-cell. Cell Calcium 44:64–76. doi: 10.1016/j.ceca.2007.11.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Young-Eun Han
    • 1
  • Shin-Young Ryu
    • 1
  • Sun-Hyun Park
    • 1
  • Kyu-Hee Lee
    • 1
  • Suk-Ho Lee
    • 1
  • Won-Kyung Ho
    • 1
    Email author
  1. 1.Department of Physiology and Biomembrane Plasticity Research CenterSeoul National University College of MedicineSeoulRepublic of Korea

Personalised recommendations