Pflügers Archiv - European Journal of Physiology

, Volume 467, Issue 12, pp 2529–2539 | Cite as

ENaC activity in collecting ducts modulates NCC in cirrhotic mice

  • David MordasiniEmail author
  • Dominique Loffing-Cueni
  • Johannes Loffing
  • Rohrbach Beatrice
  • Marc P. Maillard
  • Edith Hummler
  • Michel Burnier
  • Geneviève Escher
  • Bruno Vogt
Molecular and cellular mechanisms of disease


Cirrhosis is a frequent and severe disease, complicated by renal sodium retention leading to ascites and oedema. A better understanding of the complex mechanisms responsible for renal sodium handling could improve clinical management of sodium retention. Our aim was to determine the importance of the amiloride-sensitive epithelial sodium channel (ENaC) in collecting ducts in compensate and decompensate cirrhosis. Bile duct ligation was performed in control mice (CTL) and collecting duct-specific αENaC knockout (KO) mice, and ascites development, aldosterone plasma concentration, urinary sodium/potassium ratio and sodium transporter expression were compared. Disruption of ENaC in collecting ducts (CDs) did not alter ascites development, urinary sodium/potassium ratio, plasma aldosterone concentrations or Na,K-ATPase abundance in CCDs. Total αENaC abundance in whole kidney increased in cirrhotic mice of both genotypes and cleaved forms of α and γ ENaC increased only in ascitic mice of both genotypes. The sodium chloride cotransporter (NCC) abundance was lower in non-ascitic KO, compared to non-ascitic CTL, and increased when ascites appeared. In ascitic mice, the lack of αENaC in CDs induced an upregulation of total ENaC and NCC and correlated with the cleavage of ENaC subunits. This revealed compensatory mechanisms which could also take place when treating the patients with diuretics. These compensatory mechanisms should be considered for future development of therapeutic strategies.


Ascites Aldosterone Cirrhosis Cortical collecting ducts ENaC NCC 



We thank Professors A Doucet and B Rossier for constructive comments, Dr. H Mistry, Dr. G Crambert and Dr. N Faller for their helpful reading of the manuscript and discussions and A Tedjani and A Menoud for the technical assistance. We thank Dr. Frederic Schütz (Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics) for his assistance with statistical analysis.

Financial support

This study was supported by grants from the Swiss National Science Foundation: 31003A_120406 and 31003A_135417 attributed to BV. The laboratory of JL is supported by SNF grant 310030_143929/1.


  1. 1.
    Ackermann D, Mordasini D, Cheval L, Imbert-Teboul M, Vogt B, Doucet A (2007) Sodium retention and ascites formation in a cholestatic mice model: role of aldosterone and mineralocorticoid receptor? Hepatology 46:173–179. doi: 10.1002/hep.21699 CrossRefPubMedGoogle Scholar
  2. 2.
    Alaish SM, Torres M, Ferlito M, Sun CC, De Maio A (2005) The severity of cholestatic injury is modulated by the genetic background. Shock 24:412–416CrossRefPubMedGoogle Scholar
  3. 3.
    Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276:28857–28865. doi: 10.1074/jbc.M011610200 CrossRefPubMedGoogle Scholar
  4. 4.
    Arroyo V, Bernardi M, Epstein M, Henriksen JH, Schrier RW, Rodes J (1988) Pathophysiology of ascites and functional renal failure in cirrhosis. J Hepatol 6:239–257CrossRefPubMedGoogle Scholar
  5. 5.
    Doucet A, Katz AI, Morel F (1979) Determination of Na-K-ATPase activity in single segments of the mammalian nephron. Am J Physiol 237:F105–113PubMedGoogle Scholar
  6. 6.
    Ergonul Z, Frindt G, Palmer LG (2006) Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol 291:F683–693. doi: 10.1152/ajprenal.00422.2005 CrossRefPubMedGoogle Scholar
  7. 7.
    Fernandez-Llama P, Jimenez W, Bosch-Marce M, Arroyo V, Nielsen S, Knepper MA (2000) Dysregulation of renal aquaporins and Na-Cl cotransporter in CCl4-induced cirrhosis. Kidney Int 58:216–228. doi: 10.1046/j.1523-1755.2000.00156.x CrossRefPubMedGoogle Scholar
  8. 8.
    Frindt G, Ergonul Z, Palmer LG (2008) Surface expression of epithelial Na channel protein in rat kidney. J Gen Physiol 131:617–627. doi: 10.1085/jgp.200809989 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Frindt G, Palmer LG (2004) Na channels in the rat connecting tubule. Am J Physiol Renal Physiol 286:F669–674. doi: 10.1152/ajprenal.00381.2003 CrossRefPubMedGoogle Scholar
  10. 10.
    Frindt G, Palmer LG (2009) Surface expression of sodium channels and transporters in rat kidney: effects of dietary sodium. Am J Physiol Renal Physiol 297:F1249–1255. doi: 10.1152/ajprenal.00401.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Frindt G, Palmer LG (2012) Regulation of epithelial Na+ channels by adrenal steroids: mineralocorticoid and glucocorticoid effects. Am J Physiol Renal Physiol 302:F20–26. doi: 10.1152/ajprenal.00480.2011 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Fu Y, Gerasimova M, Batz F, Kuczkowski A, Alam Y, Sanders PW, Ronzaud C, Hummler E, Vallon V (2015) PPARgamma agonist-induced fluid retention depends on alphaENaC expression in connecting tubules. Nephron 129:68–74. doi: 10.1159/000370254 CrossRefPubMedGoogle Scholar
  13. 13.
    Gines P, Cardenas A, Arroyo V, Rodes J (2004) Management of cirrhosis and ascites. N Engl J Med 350:1646–1654. doi: 10.1056/NEJMra035021 CrossRefPubMedGoogle Scholar
  14. 14.
    Graebe M, Brond L, Christensen S, Nielsen S, Olsen NV, Jonassen TE (2004) Chronic nitric oxide synthase inhibition exacerbates renal dysfunction in cirrhotic rats. Am J Physiol Renal Physiol 286:F288–297. doi: 10.1152/ajprenal.00089.2003 CrossRefPubMedGoogle Scholar
  15. 15.
    Jonassen TE, Brond L, Torp M, Graebe M, Nielsen S, Skott O, Marcussen N, Christensen S (2003) Effects of renal denervation on tubular sodium handling in rats with CBL-induced liver cirrhosis. Am J Physiol Renal Physiol 284:F555–563. doi: 10.1152/ajprenal.00258.2002 CrossRefPubMedGoogle Scholar
  16. 16.
    Jonassen TE, Heide AM, Janjua NR, Christensen S (2002) Collecting duct function in liver cirrhotic rats with early sodium retention. Acta Physiol Scand 175:237–244CrossRefPubMedGoogle Scholar
  17. 17.
    Jonassen TE, Marcussen N, Haugan K, Skyum H, Christensen S, Andreasen F, Petersen JS (1997) Functional and structural changes in the thick ascending limb of Henle's loop in rats with liver cirrhosis. Am J Physiol 273:R568–577PubMedGoogle Scholar
  18. 18.
    Jonassen TE, Nielsen S, Christensen S, Petersen JS (1998) Decreased vasopressin-mediated renal water reabsorption in rats with compensated liver cirrhosis. Am J Physiol 275:F216–225PubMedGoogle Scholar
  19. 19.
    Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA (1998) The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A 95:14552–14557PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Kim SW, Wang W, Nielsen J, Praetorius J, Kwon TH, Knepper MA, Frokiaer J, Nielsen S (2004) Increased expression and apical targeting of renal ENaC subunits in puromycin aminonucleoside-induced nephrotic syndrome in rats. Am J Physiol Renal Physiol 286:F922–935. doi: 10.1152/ajprenal.00277.2003 CrossRefPubMedGoogle Scholar
  21. 21.
    Kim SW, Wang W, Sassen MC, Choi KC, Han JS, Knepper MA, Jonassen TE, Frokiaer J, Nielsen S (2006) Biphasic changes of epithelial sodium channel abundance and trafficking in common bile duct ligation-induced liver cirrhosis. Kidney Int 69:89–98. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  22. 22.
    Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–1027CrossRefPubMedGoogle Scholar
  23. 23.
    Loffing J, Pietri L, Aregger F, Bloch-Faure M, Ziegler U, Meneton P, Rossier BC, Kaissling B (2000) Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. Am J Physiol Renal Physiol 279:F252–258PubMedGoogle Scholar
  24. 24.
    Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F (2001) Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol 280:F675–682PubMedGoogle Scholar
  25. 25.
    Martin PY, Gines P, Schrier RW (1998) Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med 339:533–541. doi: 10.1056/NEJM199808203390807 CrossRefPubMedGoogle Scholar
  26. 26.
    Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA (1999) Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104:R19–23. doi: 10.1172/JCI7840 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Meneton P, Loffing J, Warnock DG (2004) Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 287:F593–601. doi: 10.1152/ajprenal.00454.2003 CrossRefPubMedGoogle Scholar
  28. 28.
    Nesterov V, Dahlmann A, Bertog M, Korbmacher C (2008) Trypsin can activate the epithelial sodium channel (ENaC) in microdissected mouse distal nephron. Am J Physiol Renal Physiol 295:F1052–1062. doi: 10.1152/ajprenal.00031.2008 CrossRefPubMedGoogle Scholar
  29. 29.
    Ronzaud C, Loffing J, Bleich M, Gretz N, Grone HJ, Schutz G, Berger S (2007) Impairment of sodium balance in mice deficient in renal principal cell mineralocorticoid receptor. J Am Soc Nephrol 18:1679–1687. doi: 10.1681/ASN.2006090975 CrossRefPubMedGoogle Scholar
  30. 30.
    Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC (2003) Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112:554–565. doi: 10.1172/JCI16956 PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Sandberg MB, Maunsbach AB, McDonough AA (2006) Redistribution of distal tubule Na + -Cl- cotransporter (NCC) in response to a high-salt diet. Am J Physiol Renal Physiol 291:F503–508. doi: 10.1152/ajprenal.00482.2005 CrossRefPubMedGoogle Scholar
  32. 32.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  33. 33.
    Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing-Cueni D, Loffing J (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83:811–824. doi: 10.1038/ki.2013.14 CrossRefPubMedGoogle Scholar
  34. 34.
    Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J (2008) Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 294:F1373–1380. doi: 10.1152/ajprenal.00613.2007 CrossRefPubMedGoogle Scholar
  35. 35.
    Yu Z, Serra A, Sauter D, Loffing J, Ackermann D, Frey FJ, Frey BM, Vogt B (2005) Sodium retention in rats with liver cirrhosis is associated with increased renal abundance of NaCl cotransporter (NCC). Nephrol Dial Transplant 20:1833–1841. doi: 10.1093/ndt/gfh916 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • David Mordasini
    • 1
    • 2
    Email author
  • Dominique Loffing-Cueni
    • 5
  • Johannes Loffing
    • 5
  • Rohrbach Beatrice
    • 1
    • 2
  • Marc P. Maillard
    • 3
  • Edith Hummler
    • 4
  • Michel Burnier
    • 3
  • Geneviève Escher
    • 1
    • 2
  • Bruno Vogt
    • 1
    • 2
  1. 1.Department of Nephrology, Hypertension and Clinical Pharmacology, InselspitalBern University HospitalBernSwitzerland
  2. 2.Department of Clinical ResearchUniversity of BernBernSwitzerland
  3. 3.Service of Nephrology and Hypertension, CHUVLausanneSwitzerland
  4. 4.Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland
  5. 5.Institute of AnatomyUniversity of ZurichZurichSwitzerland

Personalised recommendations