Pflügers Archiv - European Journal of Physiology

, Volume 467, Issue 12, pp 2423–2435 | Cite as

Heterologous expression of NaV1.9 chimeras in various cell systems

  • R. Oliver Goral
  • Enrico Leipold
  • Ehsan Nematian-Ardestani
  • Stefan H. HeinemannEmail author
Ion channels, receptors and transporters


SCN11A encodes the voltage-gated sodium channel NaV1.9, which deviates most strongly from the other eight NaV channels expressed in mammals. It is characterized by resistance to the prototypic NaV channel blocker tetrodotoxin and exhibits slow activation and inactivation gating. Its expression in dorsal root ganglia neurons suggests a role in motor or pain signaling functions as also recently demonstrated by the occurrence of various mutations in human SCN11A leading to altered pain sensation syndromes. The systematic investigation of human NaV1.9, however, is severely hampered because of very poor heterologous expression in host cells. Using patch-clamp and two-electrode voltage-clamp methods, we show that this limitation is caused by the C-terminal structure of NaV1.9. A chimera of NaV1.9 harboring the C terminus of NaV1.4 yields functional expression not only in neuronal cells but also in non-excitable cells, such as HEK 293T or Xenopus oocytes. The major functional difference of the chimeric channel with respect to NaV1.9 is an accelerated activation and inactivation. Since the entire transmembrane domain is preserved, it is suited for studying pharmacological properties of the channel and the functional impact of disease-causing mutations. Moreover, we demonstrate how mutation S360Y makes NaV1.9 channels sensitive to tetrodotoxin and saxitoxin and that the unusual slow open-state inactivation of NaV1.9 is also mediated by the IFM (isoleucine–phenylalanine–methionine) inactivation motif located in the linker connecting domains III and IV.


Sodium channel TTX resistance STX resistance Pain Heterologous expression Patch clamp SCN11A 






NaV channel

Voltage-gated sodium channel






Wild type



R. Blum (Würzburg, Germany) generously provided the coding sequence of SCN11A. We also thank C. Nau (Lübeck, Germany) and Ch. Fahlke (Jülich, Germany) for providing us with ND7/23 and HEK 293T cells, respectively, and A. Roßner and A. Kessler for the technical assistance.


E.L. was partially supported by German Research Foundation (DFG, LE2338/3-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Supplementary material

424_2015_1709_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1275 kb)


  1. 1.
    Black JA, Vasylyev D, Dib-Hajj SD, Waxman SG (2014) NaV1.9 expression in magnocellular neurosecretory cells of supraoptic nucleus. Exp Neurol 253:174–179CrossRefPubMedGoogle Scholar
  2. 2.
    Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature 419:687–693CrossRefPubMedGoogle Scholar
  3. 3.
    Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590:2577–2589PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Chichili VPR, Xiao Y, Seetharaman J, Cummins TR, Sivaraman J (2013) Structural basis for the modulation of the neuronal voltage-gated sodium channel NaV1.6 by calmodulin. Sci Res 3:2435Google Scholar
  5. 5.
    Choi JS, Tyrrell L, Waxman SG, Dib-Hajj SD (2004) Functional role of the C-terminus of voltage-gated sodium channel NaV1.8. FEBS Lett 572(1-3):256–260CrossRefPubMedGoogle Scholar
  6. 6.
    Coste B, Osorio N, Padilla F, Crest M, Delmas P (2004) Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26:123–134CrossRefPubMedGoogle Scholar
  7. 7.
    Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN (1999) A novel persistent tetrodoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19:RC43PubMedGoogle Scholar
  8. 8.
    Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 95(15):8963–8968PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dib-Hajj SD, Black JA, Cummins TR (2002) NaN/NaV1.9: a sodium channel with unique properties. Trends Neurosci 25:253–259CrossRefPubMedGoogle Scholar
  10. 10.
    Djouri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SM (2003) The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550:739–752CrossRefGoogle Scholar
  11. 11.
    Favre I, Moczydlowski E, Schild L (1995) Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins. J Gen Physiol 106(2):203–229CrossRefPubMedGoogle Scholar
  12. 12.
    Heinemann SH, Terlau H, Stühmer W, Imoto K, Noda S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443CrossRefPubMedGoogle Scholar
  13. 13.
    Heinemann SH, Terlau H, Imoto K (1992) Molecular basis for pharmacological differences between brain and cardiac sodium channels. Pflüg Arch, Eur J Physiol 422:90–92CrossRefGoogle Scholar
  14. 14.
    Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JG, Gerrits MM, Tyrrell L, Lauria G, Faber CG, Dib-Hajj SD, Merkies IS, Waxman SG (2014) Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy. Brain 37:1627–1242CrossRefGoogle Scholar
  15. 15.
    Jurman ME, Boland LM, Liu Y, Yellen G (1994) Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques 17:876–881PubMedGoogle Scholar
  16. 16.
    Lawrence JH, Orias DW, Balser JR, Nuss HB, Tomaselli GF, O’Rourke B, Marban E (1996) Single-channel analysis of inactivation-defective rat skeletal muscle sodium channels containing the F1304Q mutation. Biophys J 71(3):1285–1294PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Lee A, Goldin AL (2008) Role of the amino and carboxy termini in isoform-specific sodium channel variation. J Physiol 586(16):3917–3926PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Lee A, Goldin AL (2009) Role of the terminal domains in sodium channel localization. Channels (Austin) 3(3):171–180CrossRefGoogle Scholar
  19. 19.
    Leipold E, Liebmann L, Korenke GC, Heinrich T, Gießelmann S, Baets J, Ebbinghaus M, Goral RO, Stödberg T, Hennings JC, Bergmann M, Altmüller J, Thiele H, Wetzel A, Nürnberg P, Timmerman V, de Jonghe P, Blum R, Schaible HG, Weis J, Heinemann SH, Hübner CA, Kurth I (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Gen 45(11):1399–1404CrossRefGoogle Scholar
  20. 20.
    Leipold E, Markgraf R, Miloslavina A, Kijas M, Schirmeyer J, Imhof D, Heinemann SH (2011) Molecular determinants of the subtype specificity of μ-conotoxin SIIIA targeting neuronal voltage-gated sodium channels. Neuropharmaco,m 61:105–111CrossRefGoogle Scholar
  21. 21.
    Miloushev VZ, Levine JA, Arbing MA, Hunt JF, Pitt GS, Palmer AG (2009) Solution structure of the NaV1.2 C-terminal EF-hand domain. J Biol Chem 284(10):6446–6454PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Nguyen HM1, Goldin AL (2010) Sodium channel carboxyl-terminal residue regulates fast inactivation. J Biol Chem 285(12):9077–9089PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Ojha NK, Nematian-Ardestani E, Neugebauer S, Borowski B, El-Hussein A, Hoshi T, Leipold E, Heinemann SH (2014) Sodium channels as gateable non-photonic sensors for membrane-delimited reactive species. Biochim Biophys Acta Biomembr 1838:1412–1419CrossRefGoogle Scholar
  24. 24.
    Östman JAR, Nassar MA, Wood JN, Baker MD (2008) GTP up-regulated persistent Na+ current and enhanced nociceptor excitability require NaV1.9. J Physiol 586:1077–1087PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Patino GA, Isom LL (2010) Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease. Neurosci Lett 486:53–59PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Plummer MH, Meisler NW (1999) Evolution and diversity of mammalian sodium channel genes. Genomics 57:323–331CrossRefPubMedGoogle Scholar
  27. 27.
    Priest BT, Murphy BA, Lindia JA, Diaz C, Abbadie C, Ritter AM, Liberator P, Iyer LM, Kash SF, Kohler MG, Kaczorowski GJ, MacIntyre DE, Martin WJ (2005) Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A 102(26):9382–9387PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Roy ML, Narahashi T (1992) Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci 12(6):2104–2111PubMedGoogle Scholar
  29. 29.
    Rugiero F, Mistry M, Sage D, Black JA, Waxman SG, Crest M, Clerc N, Delmas P, Gola M (2003) Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J Neurosci 23:2715–2725PubMedGoogle Scholar
  30. 30.
    Satin J, Kyle JW, Chen M, Bell P, Cribbs LL, Fozzard HA, Rogard RB (1992) A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256:1202–1205CrossRefPubMedGoogle Scholar
  31. 31.
    Schlief T, Schönherr R, Imoto K, Heinemann SH (1996) Pore properties of rat brain II sodium channels mutated in the selectivity filter domain. Eur Biophys J 25(2):75–91CrossRefPubMedGoogle Scholar
  32. 32.
    Sivilotti L, Okuse K, Akopian AN, Moss S, Wood JN (1997) A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS. FEBS Lett 409:49–52CrossRefPubMedGoogle Scholar
  33. 33.
    Spampanato J, Kearney JA, de Haan G, McEwen DP, Escayg A, Aradi I, MacDonald BT, Levin SI, Soltesz I, Benna P, Montalenti E, Isom LL, Goldin AL (2004) Meisler MH (2004) A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction. J Neurosci 24(44):10022–10034CrossRefPubMedGoogle Scholar
  34. 34.
    Stühmer W, Terlau H, Heinemann SH (1992) Xenopus oocytes for two electrode and patch clamp recording. In: Kettenmann H, Grantyn R (eds) Practical electrophysiological methods. Wiley-Liss, New York, pp 121–125Google Scholar
  35. 35.
    Subramanian N, Wetzel A, Dombert B, Yadav P, Havlicek S, Jablonka S, Nassar MA, Blum R, Sendtner M (2012) Role of NaV1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet 21:3655–3667CrossRefPubMedGoogle Scholar
  36. 36.
    Tombola F, Patlak MM, Isacoff EY (2006) How does voltage open an ion channel? Ann Rev Cell Dev Biol 22:23–52CrossRefGoogle Scholar
  37. 37.
    Trimmer JS, Cooperman SS, Tomiko SA, Zhou JY, Crean SM, Boyle MB, Kallen RG, Sheng ZH, Barchi RL, Sigworth FJ, Goodman RH, Agnew WS, Mandel G (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49CrossRefPubMedGoogle Scholar
  38. 38.
    Vanoye CG, Kunic JD, Ehring GR, George AL Jr (2013) Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. J Gen Physiol 141(2):193–202PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Vijayaragavan K, Acharfi S, Chahine M (2004) The C-terminal region as a modulator of rNaV1.7 and rNaV1.8 expression levels. FEBS Lett 559(1-3):39–44CrossRefPubMedGoogle Scholar
  40. 40.
    Walker JR, Novick PA, Parsons WH, McGregor M, Zablocki J, Pande VS, Du Bois J (2012) Marked difference in saxitoxin and tetrodotoxin affinity for the human nociceptive voltage-gated sodium channel (Nav1.7). Proc Natl Acad Sci U S A 109(44):18102–18107PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Wetzel A, Jablonka S, Blum R (2013) Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel. Channels (Austin) 7:51–56CrossRefGoogle Scholar
  43. 43.
    Zhang H, Kolibal S, Vanderkooi JM, Cohen SA, Kallen RG (2000) A carboxy-terminal alpha-helical segment in the rat skeletal muscle voltage-dependent Na+ channel is responsible for its interaction with the amino-terminus. Biochim Biophys Acta 1467(2):406–418CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang XY, Wen J, Yang W, Wang C, Gao L, Zheng LH, Wang T, Ran K, Li Y, Li X, Xu M, Luo J, Feng S, Ma X, Ma H, Chai Z, Zhou Z, Yao J, Zhang X, Liu JY (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93(5):957–966PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • R. Oliver Goral
    • 1
  • Enrico Leipold
    • 1
  • Ehsan Nematian-Ardestani
    • 1
    • 2
  • Stefan H. Heinemann
    • 1
    Email author
  1. 1.Center for Molecular Biomedicine, Department of BiophysicsFriedrich Schiller University Jena and Jena University HospitalJenaGermany
  2. 2.Institute of PhysiologyUniversity of KielKielGermany

Personalised recommendations