Skip to main content

Advertisement

Log in

Acute temperature sensitivity in optic nerve axons explained by an electrogenic membrane potential

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Classical work in squid axon reports resting membrane potential is independent of temperature, but our findings suggest that this is not the case for axons in mammalian optic nerve. Refractory period duration changes over 10 times between 37 °C and room temperature, and afterpotential polarity is also acutely temperature sensitive, inconsistent with changes in temperature impacting nerve function only through altered rates of ion channel gating kinetics. Our evidence suggests that the membrane potential is enhanced by warming, an effect reduced by exposure to ouabain. The temperature dependence can be explained if axonal Na+/K+ ATPase continuously expels Na+ ions that enter axons largely electroneutrally, thereby adding a substantial electrogenic component to the membrane potential. Block of the Na+ transporter NKCC1 with bumetanide increases refractoriness, like depolarization, indicating that this is a probable route by which Na+ enters, raising the expectation that the rate of electroneutral Na+ influx increases with temperature and suggesting a temperature-dependent transmembrane Na+ cycle that contributes to membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

QTRAC:

A computerized threshold-tracking programme available from Digitimer Ltd

ATX-II:

47 Amino acid peptidyl toxin from sea anemone, Anemonia sulcata

HEPES:

2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

NKCC1:

Bumetanide-sensitive Na-K-2Cl co-transporter

NHE, NHE1:

Na-H ion exchanger

DAP:

Depolarizing afterpotential

References

  1. Baker M, Bostock H, Grafe P, Martius P (1987) Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J Physiol 383(1):45–67

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Barrett EF, Barrett JN (1982) Intracellular recording from vertebrate myelinated axons: mechanism of depolarizing afterpotential. J Physiol 323(1):117–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Belluzzi O, Sacchi O (1986) A quantitative description of the sodium current in the rat sympathetic neurone. J Physiol 380(1):275–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61(6):820–838. doi:10.1016/j.neuron.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  5. Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, Matthews G (2001) Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30(1):91–104

    Article  CAS  PubMed  Google Scholar 

  6. Boiko T, Van Wart A, Caldwell JH, Levinson SR, Trimmer JS, Matthews G (2003) Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci 23(6):2306–2313

    CAS  PubMed  Google Scholar 

  7. Borst JG, Sakmann B (1998) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol 506(1):143–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bostock H, Baker M, Grafe P, Reid G (1991) Changes in excitability and accommodation of human motor axons following brief periods of ischaemia. J Physiol 441(1):513–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel NaV1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci U S A 97(10):5616–5620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Carpenter DO, Alving BO (1968) A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J Gen Physiol 52(1):1–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49(2):124–141. doi:10.1016/j.toxicon.2006.09.022

    Article  CAS  PubMed  Google Scholar 

  12. Ch’en FF-T, Dilworth E, Swietach P, Goddard RS, Vaughan-Jones RD (2003) Temperature dependence of Na+-H+ exchange, Na+-HCO3 co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes. J Physiol 552(3):715–726

    Article  PubMed Central  PubMed  Google Scholar 

  13. Davis F, Schauf C (1981) Approaches to the development of pharmacological interventions in multiple sclerosis. Adv Neurol 31(1):505–510

    CAS  PubMed  Google Scholar 

  14. Friedrich T, Bamberg E, Nagel G (1996) Na+, K+-ATPase pump currents in giant excised patches activated by an ATP concentration jump. Biophys J 71(5):2486–2500. doi:10.1016/S0006-3495(96)79442-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Geck P, Pfeiffer B (1985) Na++K++2Cl cotransport in animal cells—its role in volume regulation. Ann N Y Acad Sci 456(1):166–182

    Article  CAS  PubMed  Google Scholar 

  16. Gordon T, Kocsis J, Waxman S (1990) Electrogenic pump (Na+/K+-ATPase) activity in rat optic nerve. Neuroscience 37(3):829–837

    Article  CAS  PubMed  Google Scholar 

  17. Hakozaki S, Matsumoto M, Sasaki K (1989) Temperature-sensitive activation of G-protein regulating the resting membrane conductance of Aplysia neurons. Jpn J Physiol 39(1):115–130

    Article  CAS  PubMed  Google Scholar 

  18. Halliwell J, Adams P (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250(1):71–92

    Article  CAS  PubMed  Google Scholar 

  19. Hamada K, Matsuura H, Sanada M, Toyoda F, Omatsu-Kanbe M, Kashiwagi A, Yasuda H (2003) Properties of the Na+/K+ pump current in small neurons from adult rat dorsal root ganglia. Br J Pharmacol 138(8):1517–1527. doi:10.1038/sj.bjp.0705170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG (2003) Distinct repriming and closed-state inactivation kinetics of NaV1.6 and NaV1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551(3):741–750. doi:10.1113/jphysiol.2003.047357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hodgkin AL, Katz B (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol 109(1–2):240–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108(1):37–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. James ND, Bartus K, Grist J, Bennett DL, McMahon SB, Bradbury EJ (2011) Conduction failure following spinal cord injury: functional and anatomical changes from acute to chronic stages. J Neurosci 31(50):18543–18555. doi:10.1523/JNEUROSCI. 4306-11.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jang IS, Brodwick MS, Wang ZM, Jeong HJ, Choi BJ, Akaike N (2006) The Na+/H+ exchanger is a major pH regulator in GABAergic presynaptic nerve terminals synapsing onto rat CA3 pyramidal neurons. J Neurochem 99(4):1224–1236. doi:10.1111/j.1471-4159.2006.04168.x

    Article  CAS  PubMed  Google Scholar 

  26. Kang D, Kim D (2006) TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am J Physiol Cell Physiol 291(1):C138–C146. doi:10.1152/ajpcell.00629.2005

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR, Barres BA (2001) Differential control of clustering of the sodium channels NaV1.2 and NaV1.6 at developing CNS nodes of Ranvier. Neuron 30(1):105–119

    Article  CAS  PubMed  Google Scholar 

  28. Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K (2008) GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci 28(18):4635–4639. doi:10.1523/JNEUROSCI. 0908-08.2008

    Article  CAS  PubMed  Google Scholar 

  29. Kimelberg HK, Papahadjopoulos D (1974) Effects of phospholipid acyl chain fluidity, and cholesterol on (Na++ K+) -stimulated adenosine triphosphatase. J Biol Chem 249(4):1071–1080

    CAS  PubMed  Google Scholar 

  30. Lai HC, Jan JY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7(7):548–562

    Article  CAS  PubMed  Google Scholar 

  31. Löscher W, Puskarjov M, Kaila K (2013) Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69(1):62–74. doi:10.1016/j.neuropharm.2012.05.045

    Article  PubMed  Google Scholar 

  32. Luo J, Chen H, Kintner DB, Shull GE, Sun D (2005) Decreased neuronal death in Na+/H+ exchanger isoform 1 null mice after in vitro and in vivo ischemia. J Neurosci 25(49):11256–11268

    Article  CAS  PubMed  Google Scholar 

  33. Lytle C, McManus T (2002) Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am J Physiol Cell Physiol 283(5):C1422–C1431. doi:10.1152/ajpcell.00130.2002

    Article  CAS  PubMed  Google Scholar 

  34. Ma E, Haddad GG (1997) Expression and localization of Na+/H+ exchangers in rat central nervous system. Neuroscience 79(2):591–603

    Article  CAS  PubMed  Google Scholar 

  35. Malek SA, Adorante JS, Stys PK (2005) Differential effects of Na-K-ATPase pump inhibition, chemical anoxia, and glycolytic blockade on membrane potential of rat optic nerve. Brain Res 1037(1–2):171–179. doi:10.1016/j.brainres.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  36. Payne JA, Stevenson TJ, Donaldson LF (1996) Molecular characterization of a putative K-Cl cotransporter in Rat Brain. A neuronal-specific isoform. J Biol Chem 271(27):16245–16252

    Article  CAS  PubMed  Google Scholar 

  37. Rang HP, Ritchie JM (1968) On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J Physiol 196(1):183–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ruffin VA, Salameh AI, Boron WF, Parker MD (2014) Intracellular pH regulation by acid-base transporters in mammalian neurons. Front Physiol 5:43. doi:10.3389/fphys.2014.00043

    Article  PubMed Central  PubMed  Google Scholar 

  39. Salum T, Kõks S, Kairane C, Mahlapuu R, Zilmer M, Vasar E (2010) Temperature dependence of the sodium pump is altered in the cerebral cortex of CCK2 receptor-deficient mice. Neurochem Res 35(5):688–692. doi:10.1007/s11064-009-0119-1

    Article  CAS  PubMed  Google Scholar 

  40. Shen K, Schwartzkroin P (1988) Effects of temperature alterations on population and cellular activities in hippocampal slices from mature and immature rabbit. Brain Res 475(2):305–316

    Article  CAS  PubMed  Google Scholar 

  41. Smith KJ, McDonald WI (1999) The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philos Trans R Soc Lond B Biol Sci 354(1390):1649–1673. doi:10.1098/rstb.1999.0510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Smith KJ, Waxman SG (2005) The conduction properties of demyelinated and remyelinated axons. In: Waxman SG (ed) Mult. Scler. as a Neuronal Dis. Academic, pp 85–100

  43. Snape A, Pittaway JF, Baker MD (2010) Excitability parameters and sensitivity to anemone toxin ATX-II in rat small diameter primary sensory neurones discriminated by Griffonia simplicifolia isolectin IB4. J Physiol 588(1):125–137. doi:10.1113/jphysiol.2009.181107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Thompson SM, Masukawa LM, Prince DA (1985) Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci 5(3):817–824

    CAS  PubMed  Google Scholar 

  45. Thuault SJ, Malleret G, Constantinople CM, Nicholls R, Chen I, Zhu J, Panteleyev A, Vronskaya S, Nolan MF, Bruno R, Siegelbaum SA, Kandel ER (2013) Prefrontal cortex HCN1 channels enable intrinsic persistent neural firing and executive memory function. J Neurosci 33(34):13583–13599. doi:10.1523/JNEUROSCI. 2427-12.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Todd N, Conn A (1986) Near drowning and hypothermia mimicking severe closed head injury. Br Med J 293(6547):594–595

    Article  CAS  Google Scholar 

  47. Tomlinson SE, Tan SV, Kullmann DM, Griggs RC, Burke D, Hanna MG, Bostock H (2010) Nerve excitability studies characterize Kv1.1 fast potassium channel dysfunction in patients with episodic ataxia type 1. Brain 133(12):3530–3540. doi:10.1093/brain/awq318

    Article  PubMed Central  PubMed  Google Scholar 

  48. Urayama O, Shutt H, Sweadner KJ (1989) Identification of three isozyme proteins of the catalytic subunit of the Na, K-ATPase in rat brain. J Biol Chem 264(14):8271–8280

    CAS  PubMed  Google Scholar 

  49. Volgushev M, Vidyasagar TR, Chistiakova M, Yousef T, Eysel UT (2000) Membrane properties and spike generation in rat visual cortical cells during reversible cooling. J Physiol 522(1):59–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zeuthen T, MacAulay N (2012) Cotransport of water by Na+-K+-2Cl cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 590(5):1139–1154. doi:10.1113/jphysiol.2011.226316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the MS society (MDB), Barts and the London MSc programme in Translational Neuroscience (GA), and a Rod Flower Scholarship (TAC, JM). We thank Christopher Pendleton for the technical assistance and Peter Reeh, Hugh Bostock, and Monica Calado-Marta for the comments on previous versions of this manuscript.

Compliance with ethical standards statement

Procedures for isolation of ex vivo animal tissue were in accordance with Home Office UK regulations.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Baker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coates, T.A., Woolnough, O., Masters, J.M. et al. Acute temperature sensitivity in optic nerve axons explained by an electrogenic membrane potential. Pflugers Arch - Eur J Physiol 467, 2337–2349 (2015). https://doi.org/10.1007/s00424-015-1696-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1696-2

Keywords

Navigation