Skip to main content
Log in

Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Anoctamin 6 (ANO6) is a member of the recently identified TMEM16/anoctamin protein family comprising Ca2+-activated Cl channels that generate outward-rectifying ionic currents in response to intracellular Ca2+ increase. ANO6 is also essential for Ca2+-dependent phospholipid scrambling required for blood coagulation. Selective serotonin reuptake inhibitors (SSRIs)—fluoxetine, sertraline, and paroxetine—that are used for the treatment of major depressive disorders can increase the risk of upper gastrointestinal bleeding after chronic treatment. However, at the earlier stage of intake, which is 1–7 days after the treatment, the possibility of blood coagulation might also increase, but transiently. Therefore, in this study, we investigated whether therapeutic SSRI concentrations affected the Cl current or phospholipid scrambling activity of ANO6 by assessing ANO6 currents (I ANO6), phosphatidylserine (PS) exposure, and platelet aggregation. In the whole-cell patch mode, SSRIs facilitated Ca2+-dependent activation of IANO6 in ANO6-transfected cells, as evidenced by a significant decrease in the delay of IANO6 generation. On the other hand, in the inside-out patch clamp configuration, SSRIs showed an inhibitory effect on ANO6 currents, suggesting that SSRIs activate ANO6 via an indirect mechanism in intact cells. SSRIs also facilitated Ca2+-dependent PS exposure and α-thrombin-induced platelet aggregation. These results indicate that SSRIs at clinically relevant concentrations promote Ca2+-dependent activation of ANO6, which may have potential clinical implications such as the underlying mechanism of SSRI-induced adverse drug reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Altamura AC, Moro AR, Percudani M (1994) Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet 26(3):201–214. doi:10.2165/00003088-199426030-00004

    Article  CAS  PubMed  Google Scholar 

  2. Baumann P (1996) Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet 31(6):444–469. doi:10.2165/00003088-199631060-00004

    Article  CAS  PubMed  Google Scholar 

  3. Baumann P (1996) Pharmacology and pharmacokinetics of citalopram and other SSRIs. Int Clin Psychopharmacol 11(Suppl 1):5–11

    Article  PubMed  Google Scholar 

  4. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322(5901):590–594. doi:10.1126/science.1163518

    Article  CAS  PubMed  Google Scholar 

  5. Choi JS, Hahn SJ, Rhie DJ, Yoon SH, Jo YH, Kim MS (1999) Mechanism of fluoxetine block of cloned voltage-activated potassium channel Kv1.3. J Pharmacol Exp Ther 291(1):1–6

    CAS  PubMed  Google Scholar 

  6. de Abajo FJ, Montero D, Rodriguez LA, Madurga M (2006) Antidepressants and risk of upper gastrointestinal bleeding. Basic Clin Pharmacol Toxicol 98(3):304–310. doi:10.1111/j.1742-7843.2006.pto_303.x

    Article  PubMed  Google Scholar 

  7. Deak F, Lasztoczi B, Pacher P, Petheo GL, Valeria K, Spat A (2000) Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells. Neuropharmacology 39(6):1029–1036

    Article  CAS  PubMed  Google Scholar 

  8. Dilks JR, Flaumenhaft R (2008) Fluoxetine (Prozac) augments platelet activation mediated through protease-activated receptors. J Thromb Haemost 6(4):705–708. doi:10.1111/j.1538-7836.2008.02896.x

    Article  CAS  PubMed  Google Scholar 

  9. Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K, Schreiber R, Seethala RS, Egloff AM, Chen X, Lui VW, Grandis JR, Gollin SM (2012) TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res 72(13):3270–3281. doi:10.1158/0008-5472.CAN-12-0475-T

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Edgar VA, Genaro AM, Cremaschi G, Sterin-Borda L (1998) Fluoxetine action on murine T-lymphocyte proliferation: participation of PKC activation and calcium mobilisation. Cell Signal 10(10):721–726

    Article  CAS  PubMed  Google Scholar 

  11. Edgar VA, Sterin-Borda L, Cremaschi GA, Genaro AM (1999) Role of protein kinase C and cAMP in fluoxetine effects on human T-cell proliferation. Eur J Pharmacol 372(1):65–73

    Article  CAS  PubMed  Google Scholar 

  12. Fumagalli F, Molteni R, Calabrese F, Frasca A, Racagni G, Riva MA (2005) Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J Neurochem 93(6):1551–1560. doi:10.1111/j.1471-4159.2005.03149.x

    Article  CAS  PubMed  Google Scholar 

  13. Grubb S, Poulsen KA, Juul CA, Kyed T, Klausen TK, Larsen EH, Hoffmann EK (2013) TMEM16F (Anoctamin 6), an anion channel of delayed Ca(2+) activation. J Gen Physiol 141(5):585–600. doi:10.1085/jgp.201210861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Halperin D, Reber G (2007) Influence of antidepressants on hemostasis. Dialogues Clin Neurosci 9(1):47–59

    PubMed Central  PubMed  Google Scholar 

  15. Harper CM, Fukodome T, Engel AG (2003) Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology 60(10):1710–1713

    Article  CAS  PubMed  Google Scholar 

  16. Harper MT, Poole AW (2013) Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity. Cell Death Dis 19(4):e969. doi:10.1038/cddis.2013.495

    Article  Google Scholar 

  17. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9(9):1134–1141. doi:10.1038/nn1749

    Article  CAS  PubMed  Google Scholar 

  18. Hiemke C, Hartter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85(1):11–28

    Article  CAS  PubMed  Google Scholar 

  19. Huang F, Wang X, Ostertag EM, Nuwal T, Huang B, Jan YN, Basbaum AI, Jan LY (2013) TMEM16C facilitates Na(+)-activated K(+) currents in rat sensory neurons and regulates pain processing. Nat Neurosci 16(9):1284–1290. doi:10.1038/nn.3468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587(Pt 20):4887–4904. doi:10.1113/jphysiol.2009.176198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jonnakuty C, Gragnoli C (2008) What do we know about serotonin? J Cell Physiol 217(2):301–306. doi:10.1002/jcp.21533

    Article  CAS  PubMed  Google Scholar 

  22. Jung J, Nam JH, Park HW, Oh U, Yoon JH, Lee MG (2013) Dynamic modulation of ANO1/TMEM16A HCO3(−) permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A 110(1):360–365. doi:10.1073/pnas.1211594110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kasper S, Dotsch M, Kick H, Vieira A, Moller HJ (1993) Plasma concentrations of fluvoxamine and maprotiline in major depression: implications on therapeutic efficacy and side effects. Eur Neuropsychopharmacol: J Eur Neuropsychopharmacol 3(1):13–21. doi:10.1016/0924-977X(93)90290-3

    Article  CAS  Google Scholar 

  24. Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A (2005) Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br J Pharmacol 144(6):821–829. doi:10.1038/sj.bjp.0706068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kobayashi T, Washiyama K, Ikeda K (2003) Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). Br J Pharmacol 138(6):1119–1128. doi:10.1038/sj.bjp.0705172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Maertens C, Droogmans G, Verbesselt R, Nilius B (2002) Block of volume-regulated anion channels by selective serotonin reuptake inhibitors. Naunyn Schmiedeberg’s Arch Pharmacol 366(2):158–165. doi:10.1007/s00210-002-0567-5

    Article  CAS  Google Scholar 

  27. Maertens C, Wei L, Voets T, Droogmans G, Nilius B (1999) Block by fluoxetine of volume-regulated anion channels. Br J Pharmacol 126(2):508–514. doi:10.1038/sj.bjp.0702314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Martins JR, Faria D, Kongsuphol P, Reisch B, Schreiber R, Kunzelmann K (2011) Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc Natl Acad Sci U S A 108(44):18168–18172. doi:10.1073/pnas.1108094108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F, Pierre M (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24(2):207–216. doi:10.1385/JMN:24:2:207

    Article  CAS  PubMed  Google Scholar 

  30. Ousingsawat J, Kongsuphol P, Schreiber R, Kunzelmann K (2011) CFTR and TMEM16A are separate but functionally related Cl channels. Cell Physiol Biochem 28(4):715–724. doi:10.1159/000335765

    Article  CAS  PubMed  Google Scholar 

  31. Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C 3rd (1998) Inhibition of neuronal Na+ channels by antidepressant drugs. J Pharmacol Exp Ther 284(1):208–214

    CAS  PubMed  Google Scholar 

  32. Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139(2):620–631. doi:10.1053/j.gastro.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  33. Pifferi S, Dibattista M, Menini A (2009) TMEM16B induces chloride currents activated by calcium in mammalian cells. Pflugers Arch 458(6):1023–1038. doi:10.1007/s00424-009-0684-9

    Article  CAS  PubMed  Google Scholar 

  34. Rock JR, O’Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR (2009) Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl secretory channel in mouse airways. J Biol Chem 284(22):14875–14880. doi:10.1074/jbc.C109.000869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Romanenko VG, Catalan MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE (2010) Tmem16A encodes the Ca2+-activated Cl channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285(17):12990–13001. doi:10.1074/jbc.M109.068544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234. doi:10.1038/nm1102-1227

    Article  CAS  PubMed  Google Scholar 

  37. Sauer WH, Berlin JA, Kimmel SE (2001) Selective serotonin reuptake inhibitors and myocardial infarction. Circulation 104(16):1894–1898

    Article  CAS  PubMed  Google Scholar 

  38. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134(6):1019–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Shimizu T, Iehara T, Sato K, Fujii T, Sakai H, Okada Y (2013) TMEM16F is a component of a Ca2+-activated Cl channel but not a volume-sensitive outwardly rectifying Cl channel. Am J Physiol Cell Physiol 304(8):C748–C759. doi:10.1152/ajpcell.00228.2012

    Article  CAS  PubMed  Google Scholar 

  40. Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106(28):11776–11781. doi:10.1073/pnas.0903304106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Suzuki J, Nagata S (2011) Phospholipid scrambling by TMEM16F. Seikagaku 83(11):1050–1054

    CAS  PubMed  Google Scholar 

  42. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468(7325):834–838. doi:10.1038/nature09583

    Article  CAS  PubMed  Google Scholar 

  43. Tata LJ, West J, Smith C, Farrington P, Card T, Smeeth L, Hubbard R (2005) General population based study of the impact of tricyclic and selective serotonin reuptake inhibitor antidepressants on the risk of acute myocardial infarction. Heart 91(4):465–471. doi:10.1136/hrt.2004.037457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Tian Y, Schreiber R, Kunxelmann K (2012) Anoctamins are a family of Ca2+ activated Cl- channels. J Cell Sci 125(pt 21):4991–4998. doi:10.1242/jcs.10955

    Article  CAS  PubMed  Google Scholar 

  45. Traboulsie A, Chemin J, Kupfer E, Nargeot J, Lory P (2006) T-type calcium channels are inhibited by fluoxetine and its metabolite norfluoxetine. Mol Pharmacol 69(6):1963–1968. doi:10.1124/mol.105.020842

    Article  CAS  PubMed  Google Scholar 

  46. Wernicke JF (2004) Safety and side effect profile of fluoxetine. Expert Opin Drug Saf 3(5):495–504. doi:10.1517/14740338.3.5.495

    Article  CAS  PubMed  Google Scholar 

  47. Wong DT, Bymaster FP, Engleman EA (1995) Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57(5):411–441

    Article  CAS  PubMed  Google Scholar 

  48. Wong DT, Perry KW, Bymaster FP (2005) Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4(9):764–774. doi:10.1038/nrd1821

    CAS  PubMed  Google Scholar 

  49. Yang H, Kim A, David T, Palmer D, Jin T, Tien J, Huang F, Cheng T, Coughlin SR, Jan YN, Jan LY (2012) TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151(1):111–122. doi:10.1016/j.cell.2012.07.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455(7217):1210–1215. doi:10.1038/nature07313

    Article  CAS  PubMed  Google Scholar 

  51. Yeung SY, Millar JA, Mathie A (1999) Inhibition of neuronal KV potassium currents by the antidepressant drug, fluoxetine. Br J Pharmacol 128(7):1609–1615. doi:10.1038/sj.bjp.0702955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2011-0014404, to J.H.N) and by grants 2013R1A3A2042197 and 2007-0056092 from the National Research Foundation, the Ministry of Science, ICT and Future Planning, Korea (to M.G.L).

Conflict of interest

The authors state no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Nam.

Additional information

Hyun Jong Kim and Ikhyun Jun contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Ca2+-dependent activation kinetics of hANO1. a-b Typical IANO1 traces in the whole-cell patch clamp with symmetrical NMDG-Cl (150 mM) and 200 nM free Ca2+ in the pipette solution and the related I-V curves in hANO1-overexpressing HEK293T cells (n = 6). I-V relationship was assessed for each event by voltage ramps from -100 mV to +100 mV at the rate (dV/dt) = 0.2 V/s. Note that IANO1 was generated immediately after the start of the whole-cell recording. (DOC 199 kb)

Supplementary Fig. 2

ANO6 expression and whole-cell patch clamp in mock-transfected HEK293T cells. a Comparison of ANO6 expression between mock- and ANO6-transfected HEK293T cells by immunoblotting analysis. ANO6 expression was detected only after long exposure of the membranes. b Representative traces of mock-transfected HEK293T cells in the whole-cell patch clamp with 10 μM free Ca2+ pipette solution. Note that IANO6 was not generated during the recording time (over 20 min). c Relative I-V relationship. (DOC 766 kb)

Supplementary Fig. 3

Inhibitory effects of SSRIs on ANO1 activation in HEK293T cells. IANO1 was inhibited by SSRIs in both whole-cell and inside-out patch clamps. The whole-cell patch clamp recording from hANO1-expressing HEK293T cells was performed using symmetrical (150 mM) NMDG-Cl (bath and pipette); the pipette solution contained 200 nM Ca2+ for ANO1 activation. For the inside-out patch clamp recording, the patches were exposed to 300 nM Ca2+, with symmetrical (150 mM) NMDG-Cl (left-side panels). I-V relationship was obtained by voltage ramps from −100 to +100 mV at the rate (dV/dt) = 0.2 V/s; the holding potential was 0 mV (right-side panels). Representative traces of fluoxetine (F), sertraline (S), and paroxetine (P) on IANO1 in inside-out (a, d, e) and whole-cell (b, d) patch clamp recording. The data are the results of three independent experiments. (DOC 175 kb)

Supplementary Fig. 4

Fluoxetine potentiates ANO6-like currents in PANC-1 cells. a Representative traces showing the effect of 300 μM fluoxetine on IANO6-like current traces with 3 μM Ca2+ pipette solution. b Mean I-V relationship curve obtained before fluoxetine treatment and during the application of the peak current after fluoxetine treatment. Data are presented as means ± SE (n = 7). (DOC 175 kb)

Supplementary Fig. 5

Fluoxetine at 100 μM induces PS exposure in both mock- and ANO6-transfected HEK293T cells. PS exposure of mock-transfected (a) or ANO6-transfected (b)HEK293T cells pre-treated with 100 μM fluoxetine for 10 min and then treated with of 1 μM ionomycin was detected by flow cytometry using Annexin V-FITC staining. Note that PS exposure occurred in both mock- and ANO6-transfected HEK293T cells (right panels). (DOC 774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Jun, I., Yoon, J.S. et al. Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure. Pflugers Arch - Eur J Physiol 467, 2243–2256 (2015). https://doi.org/10.1007/s00424-015-1692-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1692-6

Keywords

Navigation