Skip to main content

Advertisement

Log in

Murine cardiac growth, TRPC channels, and cGMP kinase I

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Signaling via cGMP-dependent protein kinase I (cGKI) and canonical transient receptor potential (TRPC) channels appears to be involved in the regulation of cardiac hypertrophy. Recent evidence suggests that TRPC channels are targets for cGKI, and phosphorylation of these channels may mediate the antihypertrophic effects of cGMP signaling. We tested this concept by investigating the role of cGMP/cGKI signaling on angiotensin II (A II)-induced cardiac hypertrophy using a control group (Ctr), trpc6−/−, trpc3−/−, trpc3−/−/6−/−, βRM mice, and trpc3−/−/6−/− × βRM mice. βRM mice express cGKIβ only in the smooth muscle on a cGKI−/− background. The control group was composed of littermate mice that contained at least one wild type gene of the respective genotype. A II was infused by minipumps (7 days; 2 mg/kg/day) in Ctr, trpc6−/−, trpc3−/−, trpc3−/−/6−/−, βRM, and trpc3−/−/6−/− × βRM mice. Hypertrophy was assessed by measuring heart weight per tibia length (HW/TL) and fibrosis by staining of heart slices. A II-induced increase in HW/TL and fibrosis was absent in trpc3−/− mice, whereas an increase in HW/TL and fibrosis was evident in Ctr and trpc6−/−, minimal or absent in trpc3−/−, moderate in βRM, and dramatic in trpc3−/−/6−/− βRM mice. These results suggest that TRPC3 may be necessary for A II-induced cardiac hypertrophy. On the other hand, hypertrophy and fibrosis were massively increased in βRM mice on a TRPC3/6 × cGKI−/−KO background, indicating an “additive” coupling between both signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adapala RK, Thoppil RJ, Luther DJ, Paruchuri S, Meszaros JG, Chilian WM, Thodeti CK (2013) TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol 54:45–52. doi:10.1016/j.yjmcc.2012.10.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Brenner JS, Dolmetsch RE (2007) TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PLoS One 2(8):e802

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281(44):33487–33496

    Article  CAS  PubMed  Google Scholar 

  4. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97(4):329–336. doi:10.1161/01.RES.0000178451.08719.5b

    Article  CAS  PubMed  Google Scholar 

  5. Das A, Smolenski A, Lohmann SM, Kukreja RC (2006) Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 281(50):38644–38652. doi:10.1074/jbc.M606142200

    Article  CAS  PubMed  Google Scholar 

  6. Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23(4):705–715. doi:10.1016/j.devcel.2012.08.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25(16):6980–6989. doi:10.1128/MCB. 25.16.6980-6989.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106(5):992–1003. doi:10.1161/CIRCRESAHA.109.206771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108(2):265–272. doi:10.1161/CIRCRESAHA.110.225888

    Article  CAS  PubMed  Google Scholar 

  10. Fiedler B, Feil R, Hofmann F, Willenbockel C, Drexler H, Smolenski A, Lohmann SM, Wollert KC (2006) cGMP-dependent protein kinase type I inhibits TAB1-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes. J Biol Chem 281(43):32831–32840. doi:10.1074/jbc.M603416200

    Article  CAS  PubMed  Google Scholar 

  11. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126(17):2051–2064. doi:10.1161/CIRCULATIONAHA.112.121830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398. doi:10.1016/j.neuron.2008.06.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA (2005) Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest 115(10):2716–2730. doi:10.1172/JCI24280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA, van Eickels M, Schlatter E, Kuhn M (2005) Enhanced activity of the myocardial Na+/H + exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112(15):2307–2317. doi:10.1161/CIRCULATIONAHA.105.542209

    Article  CAS  PubMed  Google Scholar 

  15. Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106(12):1849–1860. doi:10.1161/CIRCRESAHA.109.208314

    Article  CAS  PubMed  Google Scholar 

  16. Koitabashi N, Aiba T, Takimoto E, Montell C, Tomaselli GF, Kass DA (2009) TRPC6 phosphorylation by protein kinase G suppresses TRPC6 myocyte expression/activity and contributes to reduced NFAT-mediated hypertrophy and myocardial effects of PDE5A inhibition. Circ Res 105(7):e18

    Google Scholar 

  17. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116(12):3114–3126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF (2008) Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102(2):185–192. doi:10.1161/CIRCRESAHA.107.157677

    Article  CAS  PubMed  Google Scholar 

  19. Loga F, Domes K, Freichel M, Flockerzi V, Dietrich A, Birnbaumer L, Hofmann F, Wegener JW (2013) The role of cGMP/cGKI signalling and Trpc channels in regulation of vascular tone. Cardiovasc Res 100(2):280–287. doi:10.1093/cvr/cvt176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lukowski R, Krieg T, Rybalkin SD, Beavo J, Hofmann F (2014) Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol Sci 35(8):404–413. doi:10.1016/j.tips.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  21. Lukowski R, Rybalkin SD, Loga F, Leiss V, Beavo JA, Hofmann F (2010) Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci U S A 107(12):5646–5651. doi:10.1073/pnas.1001360107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mery PF, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A 88(4):1197–1201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Methner C, Lukowski R, Grube K, Loga F, Smith RA, Murphy MP, Hofmann F, Krieg T (2013) Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Res Cardiol 108(2):337. doi:10.1007/s00395-013-0337-1

    Article  PubMed  Google Scholar 

  24. Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J Off Publ Fed Am Soc Exp Biol 20(10):1660–1670. doi:10.1096/fj.05-5560com

    CAS  Google Scholar 

  25. Nishida M, Watanabe K, Sato Y, Nakaya M, Kitajima N, Ide T, Inoue R, Kurose H (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285(17):13244–13253. doi:10.1074/jbc.M109.074104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25(22):5305–5316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Patrucco E, Domes K, Sbroggio M, Blaich A, Schlossmann J, Desch M, Rybalkin SD, Beavo JA, Lukowski R, Hofmann F (2014) Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc Natl Acad Sci U S A 111(35):12925–12929. doi:10.1073/pnas.1414364111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U, Lohmann SM, Wollert KC (2003) Single L-type Ca(2+) channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60(2):268–277

    Article  CAS  PubMed  Google Scholar 

  29. Seo K, Rainer PP, Lee DI, Hao S, Bedja D, Birnbaumer L, Cingolani OH, Kass DA (2014) Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. Circ Res 114(5):823–832. doi:10.1161/CIRCRESAHA.114.302614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111(4):1551–1556. doi:10.1073/pnas.1308963111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105(10):1023–1030. doi:10.1161/CIRCRESAHA.109.206581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586(Pt 17):4209–4223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222. doi:10.1038/nm1175

    Article  CAS  PubMed  Google Scholar 

  34. Thodeti CK, Paruchuri S, Meszaros JG (2013) A TRP to cardiac fibroblast differentiation. Channels 7(3):211–214. doi:10.4161/chan.24328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Volpe M, Rubattu S, Burnett J Jr (2014) Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur Heart J 35(7):419–425. doi:10.1093/eurheartj/eht466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Weber S, Bernhard D, Lukowski R, Weinmeister P, Worner R, Wegener JW, Valtcheva N, Feil S, Schlossmann J, Hofmann F, Feil R (2007) Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res 101(11):1096–1103. doi:10.1161/CIRCRESAHA.107.154351

    Article  CAS  PubMed  Google Scholar 

  37. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107(15):7000–7005. doi:10.1073/pnas.1001825107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zhang M, Takimoto E, Hsu S, Lee DI, Nagayama T, Danner T, Koitabashi N, Barth AS, Bedja D, Gabrielson KL, Wang Y, Kass DA (2010) Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5. J Am Coll Cardiol 56(24):2021–2030. doi:10.1016/j.jacc.2010.08.612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Teodora Kennel for expert technical support.

Funding

The experimental work was supported by grants from Deutsche Forschungsgemeinschaft, Fond der Chemischen Industrie, and by the Intramural Research Program of the NIH (Project Z01-ES-101684 to LB).

Conflict of interest

None declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domes, K., Patrucco, E., Loga, F. et al. Murine cardiac growth, TRPC channels, and cGMP kinase I. Pflugers Arch - Eur J Physiol 467, 2229–2234 (2015). https://doi.org/10.1007/s00424-014-1682-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1682-0

Keywords

Navigation