Skip to main content
Log in

Origins of variation in conducted vasomotor responses

  • INTEGRATIVE PHYSIOLOGY
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Regulation of blood flow in the microcirculation depends on synchronized vasomotor responses. The vascular conducted response is a synchronous dilatation or constriction, elicited by a local electrical event that spreads along the vessel wall. Despite the underlying electrical nature, however, the efficacy of conducted responses varies significantly between different initiating stimuli within the same vascular bed as well as between different vascular beds following the same stimulus. The differences have stimulated proposals of different mechanisms to account for the experimentally observed variation. Using a computational approach that allows for introduction of structural and electrophysiological heterogeneity, we systematically tested variations in both arteriolar electrophysiology and modes of stimuli. Within the same vessel, our simulations show that conduction efficacy is influenced by the type of cell being stimulated and, in case of depolarization, by the stimulation strength. Particularly, simultaneous stimulation of both endothelial and vascular smooth muscle cells augments conduction. Between vessels, the specific electrophysiology determines membrane resistance and conduction efficiency—notably depolarization or radial currents reduce electrical spread. Random cell-cell variation, ubiquitous in biological systems, only cause small or no reduction in conduction efficiency. Collectively, our simulations can explain why CVRs from hyperpolarizing stimuli tend to conduct longer than CVRs from depolarizing stimuli and why agonists like acetylcholine induce CVRs that tend to conduct longer than electrical injections. The findings demonstrate that although substantial heterogeneity is observed in conducted responses, it can be largely ascribed to the origin of electrical stimulus combined with the specific electrophysiological properties of the arteriole. We conclude by outlining a set of “principles of electrical conduction” in the microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bagher P, Segal SS (2011) Regulation of blood flow in the microcirculation: Role of conducted vasodilation. Acta Physiol (Oxf) 202(3):271–284

    Article  PubMed Central  CAS  Google Scholar 

  2. Behringer EJ, Segal SS (2012) Tuning electrical conduction along endothelial tubes of resistance arteries through ca2+-activated k+ channels. Circ Res 110(10):1311–1321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Boettcher M, de Wit C (2011) Distinct endothelium-derived hyperpolarizing factors emerge in vitro and in vivo and are mediated in part via connexin 40-dependent myoendothelial coupling. Hypertension 57(4):802–808

    Article  CAS  PubMed  Google Scholar 

  4. Brayden JE, Nelson MT (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256(5056):532–535

    Article  CAS  PubMed  Google Scholar 

  5. Carter TD, Ogden D (1994) Acetylcholine-stimulated changes of membrane potential and intracellular ca2+ concentration recorded in endothelial cells in situ in the isolated rat aorta. Pflugers Arch 428(5-6):476–484

    Article  CAS  PubMed  Google Scholar 

  6. Cole WC, Welsh DG (2011) Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem Biophys 510(2):160–173

    Article  CAS  PubMed  Google Scholar 

  7. Coleman HA, Tare M, Parkington HC (2001) Edhf is not k+ but may be due to spread of current from the endothelium in guinea pig arterioles. Am J Physiol Heart Circ Physiol 280(6):H2478–H2483

    CAS  PubMed  Google Scholar 

  8. Delashaw JB, Duling BR (1991) Heterogeneity in conducted arteriolar vasomotor response is agonist dependent. Am J Physiol 260(4 Pt 2):H1276–H1282

    CAS  PubMed  Google Scholar 

  9. Diep HK, Vigmond EJ, Segal SS, Welsh DG (2005) Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J Physiol 568(Pt 1):267–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Domeier TL, Segal SS (2007) Electromechanical and pharmacomechanical signalling pathways for conducted vasodilatation along endothelium of hamster feed arteries. J Physiol 579(Pt 1):175–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell kca3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102(10):1247–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Emerson GG, Neild TO, Segal SS (2002) Conduction of hyperpolarization along hamster feed arteries: Augmentation by acetylcholine. Am J Physiol Heart Circ Physiol 283(1):H102–H109

    Article  CAS  PubMed  Google Scholar 

  13. Emerson GG, Segal SS (2000) Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control. Circ Res 87(6):474–479

    Article  CAS  PubMed  Google Scholar 

  14. Emerson GG, Segal SS (2000) Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery. Circ Res 86(1):94–100

    Article  CAS  PubMed  Google Scholar 

  15. Haas TL, Duling BR (1997) Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles. Microvasc Res 53(2):113–120

    Article  CAS  PubMed  Google Scholar 

  16. Hald BO, Hendriksen MG, Sørensen PG (2013) Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells. Bioinformatics 29(10):1292–1298

    Article  CAS  PubMed  Google Scholar 

  17. Hald BO, Jacobsen JCB, Braunstein TH, Inoue R, Ito Y., Sørensen PG, Holstein-Rathlou NH, Jensen LJ (2012) Bkca and kv channels limit conducted vasomotor responses in rat mesenteric terminal arterioles. Pflugers Arch 463(2):279–295

    Article  CAS  PubMed  Google Scholar 

  18. Hald BO, Jacobsen JCB, Sandow SL, Holstein-Rathlou NH, Welsh DG (2014) Less is more: minimal expression of myoendothelial gap junctions optimizes cell-cell communication in virtual arterioles. J Physiol 592(Pt 15):3243–3255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hald BO, Jensen LJ, Sørensen PG, Holstein-Rathlou NH, Jacobsen JCB (2012) Applicability of cable theory to vascular conducted responses. Biophys J 102(6):1352–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hanani M (1997) Microscopic analysis of pressure ejection of drugs from micropipettes. J Basic Clin Physiol Pharmacol 8(1–2):57–71

    CAS  PubMed  Google Scholar 

  21. Hill CE, Phillips JK, Sandow SL (2001) Heterogeneous control of blood flow amongst different vascular beds. Med Res Rev 21(1):1–60

    Article  CAS  PubMed  Google Scholar 

  22. Hungerford JE, Sessa WC, Segal SS (2000) Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J 14(1):197–207

    CAS  PubMed  Google Scholar 

  23. Kapela A, Bezerianos A, Tsoukias NM (2009) A mathematical model of vasoreactivity in rat mesenteric arterioles: I. myoendothelial communication. Microcirculation 16(8):694–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kapela A, Nagaraja S, Tsoukias NM (2010) A mathematical model of vasoreactivity in rat mesenteric arterioles. ii. conducted vasoreactivity. Am J Physiol Heart Circ Physiol 298(1): H52–H65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kurjiaka DT, Segal SS (1995) Conducted vasodilation elevates flow in arteriole networks of hamster striated muscle. Am J Physiol 269(5 Pt 2):H1723–H1728

    CAS  PubMed  Google Scholar 

  26. Lidington D, Ouellette Y, Tyml K. (2000) Endotoxin increases intercellular resistance in microvascular endothelial cells by a tyrosine kinase pathway. J Cell Physiol 185(1):117–125

    Article  CAS  PubMed  Google Scholar 

  27. Loewer A, Lahav G (2011) We are all individuals: Causes and consequences of non-genetic heterogeneity in mammalian cells. Curr Opin Genet Dev 21(6):753–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. McCloskey KD, Toland HM, Hollywood MA, Thornbury KD, McHale NG (1999) Hyperpolarisation-activated inward current in isolated sheep mesenteric lymphatic smooth muscle. J Physiol 521(Pt 1):201–211

    Article  Google Scholar 

  29. Nilius B, Viana F, Droogmans G (1997) Ion channels in vascular endothelium. Annu Rev Physiol 59:145–170

    Article  CAS  PubMed  Google Scholar 

  30. Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F. (2009) What’s where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36(1):67–76

    Article  CAS  PubMed  Google Scholar 

  31. Siegl D, Koeppen M, Wölfle SE, Pohl U, de Wit C (2005) Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res 97(8):781–788

    Article  CAS  PubMed  Google Scholar 

  32. Silva HS, Kapela A, Tsoukias NM (2007) A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells. Am J Physiol Cell Physiol 293(1):C277–C293

    Article  CAS  PubMed  Google Scholar 

  33. Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM, Nakai J, Salama G, Segal SS, Kotlikoff MI (2007) Propagated endothelial ca2+ waves and arteriolar dilation in vivo: Measurements in cx40bac gcamp2 transgenic mice. Circ Res 101(12):1300–1309

    Article  CAS  PubMed  Google Scholar 

  34. Thakali KM, Kharade SV, Sonkusare SK, Rhee SW, Stimers JR, Rusch NJ (2010) Intracellular ca2+ silences l-type ca2+ channels in mesenteric veins: Mechanism of venous smooth muscle resistance to calcium channel blockers. Circ Res 106(4):739–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tran CHT, Taylor MS, Plane F, Nagaraja S, Tsoukias NM, Solodushko V, Vigmond EJ, Furstenhaupt T, Brigdan M, Welsh DG (2012) Endothelial ca2+ wavelets and the induction of myoendothelial feedback. Am J Physiol Cell Physiol 302(8):C1226–C1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tran CHT, Vigmond EJ, Goldman D, Plane F, Welsh DG (2012) Electrical communication in branching arterial networks. Am J Physiol Heart Circ Physiol 303(6):H680–H692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tran CHT, Vigmond EJ, Plane F, Welsh DG (2009) Mechanistic basis of differential conduction in skeletal muscle arteries. J Physiol 587(Pt 6):1301–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Welsh DG, Segal SS (2000) Role of edhf in conduction of vasodilation along hamster cheek pouch arterioles in vivo. Am J Physiol Heart Circ Physiol 278(6):H1832–H1839

    CAS  PubMed  Google Scholar 

  39. de Wit C (2010) Different pathways with distinct properties conduct dilations in the microcirculation in vivo. Cardiovasc Res 85(3):604–613

    Article  CAS  PubMed  Google Scholar 

  40. de Wit C, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions—Fact or fiction? Cell Commun Adhes 15(3):231–245

    Article  CAS  PubMed  Google Scholar 

  41. Wölfle SE, Chaston DJ, Goto K, Sandow SL, Edwards FR, Hill CE (2011) Non-linear relationship between hyperpolarisation and relaxation enables long distance propagation of vasodilatation. J Physiol 589(Pt 10):2607–2623

    Article  PubMed Central  PubMed  Google Scholar 

  42. Yamamoto Y, Klemm MF, Edwards FR, Suzuki H (2001) Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles. J Physiol 535(Pt 1):181–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is part of the Dynamical Systems Interdisciplinary Network, University of Copenhagen. BOH is supported by Arvid Nilssons Fond and the Danish Council for Independent Research (DFF – 1333-00172). DGW is supported by an operating grant from the Canadian Institute of Health Research. The authors would like to thank Preben Graae Sørensen for the use of his computing cluster.

Conflict of interests

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Olav Hald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 361 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hald, B.O., Welsh, D.G., Holstein-Rathlou, NH. et al. Origins of variation in conducted vasomotor responses. Pflugers Arch - Eur J Physiol 467, 2055–2067 (2015). https://doi.org/10.1007/s00424-014-1649-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1649-1

Keywords

Navigation