Piezo channels: from structure to function

  • Linda Volkers
  • Yasmine Mechioukhi
  • Bertrand Coste
Invited Review

Abstract

Mechanotransduction is the conversion of mechanical stimuli into biological signals. It is involved in the modulation of diverse cellular functions such as migration, proliferation, differentiation, and apoptosis as well as in the detection of sensory stimuli such as air vibration and mechanical contact. Therefore, mechanotransduction is crucial for organ development and homeostasis and plays a direct role in hearing, touch, proprioception, and pain. Multiple molecular players involved in mechanotransduction have been identified in the past, among them ion channels directly activated by cell membrane deformation. Most of these channels have well-established roles in lower organisms but are not conserved in mammals or fail to encode mechanically activated channels in mammals due to non-conservation of mechanotransduction property. A family of mechanically activated channels that counts only two members in human, piezo1 and 2, has emerged recently. Given the lack of valid mechanically activated channel candidates in mammals in the past decades, particular attention is given to piezo channels and their potential roles in various biological functions. This review summarizes our current knowledge on these ion channels.

Keywords

Piezo1 Piezo2 Mechanotransduction Channels Touch Pain Somatosensation 

Notes

Acknowledgments

Authors are supported by a grant from Agence Nationale de la Recherche (ANR-12-PDOC-0005-01). We thank Dr. Nancy Osorio for critical reading of the manuscript.

References

  1. 1.
    Abend M et al (2012) Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident. PLoS One 7:e39103PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Albuisson J et al (2013) Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun 4:1884PubMedCentralPubMedGoogle Scholar
  3. 3.
    Andolfo I et al (2013) Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood 121:3925–3935PubMedCrossRefGoogle Scholar
  4. 4.
    Bae C et al (2013) Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc Natl Acad Sci U S A 110:E1162–E1168PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bae C, Gottlieb PA, Sachs F (2013) Human PIEZO1: removing inactivation. Biophys J 105:880–886PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bae C, Sachs F, Gottlieb PA (2011) The mechanosensitive ion channel piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50:6295–6300PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Beitzinger M et al (2008) p73 poses a barrier to malignant transformation by limiting anchorage-independent growth. EMBO J 27:792–803PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Beurg M et al (2006) A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. J Neurosci 26:10992–11000PubMedCrossRefGoogle Scholar
  9. 9.
    Bron R et al (2014) Piezo2 expression in corneal afferent neurons. J Comp Neurol. 522(13):2967–2979. doi: 10.1002/cne.23560
  10. 10.
    Bruce LJ (2009) Hereditary stomatocytosis and cation-leaky red cells—recent developments. Blood Cells Mol Dis 42:216–222PubMedCrossRefGoogle Scholar
  11. 11.
    Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52PubMedCrossRefGoogle Scholar
  12. 12.
    Coste B et al (2013) Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis. Proc Natl Acad Sci U S A 110:4667–4672PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Coste B et al (2010) Piezo1 and piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Coste B et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Craelius W, el-Sherif N, Palant CE (1989) Stretch-activated ion channels in cultured mesangial cells. Biochem Biophys Res Commun 159:516–521PubMedCrossRefGoogle Scholar
  16. 16.
    Delmas P, Coste B (2013) Mechano-gated ion channels in sensory systems. Cell 155:278–284PubMedCrossRefGoogle Scholar
  17. 17.
    Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12:139–153PubMedCrossRefGoogle Scholar
  18. 18.
    Dubin AE et al (2012) Inflammatory signals enhance piezo2-mediated mechanosensitive currents. Cell Rep 2:511–517PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ducret T et al (2010) Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Cell Calcium 48:251–259PubMedCrossRefGoogle Scholar
  20. 20.
    Eijkelkamp N et al (2013) A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat Commun 4:1682PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Eisenhoffer GT et al (2012) Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484:546–549PubMedCrossRefGoogle Scholar
  22. 22.
    Faucherre A et al (2014) Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica 99:70–75PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Faucherre A et al (2013) Piezo2b regulates vertebrate light touch response. J Neurosci 33:17089–17094PubMedCrossRefGoogle Scholar
  24. 24.
    Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673PubMedCrossRefGoogle Scholar
  25. 25.
    Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740PubMedGoogle Scholar
  26. 26.
    Ikeda R et al (2014) Merkel cells transduce and encode tactile stimuli to drive abeta-afferent impulses. Cell 157:664–675PubMedCrossRefGoogle Scholar
  27. 27.
    Kawashima Y, Kurima K, Pan B, Griffith A, Holt J (2014) Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch. doi: 10.1007/s00424-014-1582-3
  28. 28.
    Kim SE et al (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kraske S et al (1998) Mechanosensitive ion channels in putative aortic baroreceptor neurons. Am J Physiol 275:H1497–H1501PubMedGoogle Scholar
  30. 30.
    Lapatsina L et al (2012) Stomatin-domain proteins. Eur J Cell Biol 91:240–245PubMedCrossRefGoogle Scholar
  31. 31.
    Lou S et al (2013) Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 33:870–882PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Maksimovic S et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–621Google Scholar
  33. 33.
    McBride DW Jr, Hamill OP (1992) Pressure-clamp: a method for rapid step perturbation of mechanosensitive channels. Pflugers Arch 421:606–612PubMedCrossRefGoogle Scholar
  34. 34.
    McCarter GC, Reichling DB, Levine JD (1999) Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci Lett 273:179–182PubMedCrossRefGoogle Scholar
  35. 35.
    McHugh BJ et al (2010) Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J Cell Sci 123:51–61PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    McHugh BJ et al (2012) Loss of the integrin-activating transmembrane protein Fam38A (piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration. PLoS One 7:e40346PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    McMillin MJ et al (2014) Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet 94:734–744PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Miyamoto T et al (2014) Functional role for piezo1 in stretch-evoked Ca 2+ influx and ATP release in urothelial cell cultures. J Biol Chem 289:16565–16575Google Scholar
  39. 39.
    Ory C et al (2011) Gene expression signature discriminates sporadic from post-radiotherapy-induced thyroid tumors. Endocr Relat Cancer 18:193–206PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Peyronnet R et al (2013) Piezo1-dependent stretch-activated channels are inhibited by polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:1143–1148PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Poole K et al (2014) Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Posokhov YO et al (2007) Is lipid bilayer binding a common property of inhibitor cysteine knot ion-channel blockers? Biophys J 93:L20–L22PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Ranade SS et al (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A. 111(28):10347–10352. doi: 10.1073/pnas.1409233111
  44. 44.
    Woo SH et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626Google Scholar
  45. 45.
    Yang XN et al (2014) Piezo1 is as a novel trefoil factor family 1 binding protein that promotes gastric cancer cell mobility in vitro. Dig Dis Sci 59:1428–1435Google Scholar
  46. 46.
    Zarychanski R et al (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120:1908–1915PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Linda Volkers
    • 1
  • Yasmine Mechioukhi
    • 1
  • Bertrand Coste
    • 1
  1. 1.Ion Channels and Sensory Transduction GroupAix Marseille Université, CNRS, CRN2M-UMR 7286MarseilleFrance

Personalised recommendations