Compromised maturation of GABAergic inhibition underlies abnormal network activity in the hippocampus of epileptic Ca2+ channel mutant mice, tottering

  • Akito Nakao
  • Takafumi Miki
  • Ken Shimono
  • Hiroaki Oka
  • Tomohiro Numata
  • Shigeki Kiyonaka
  • Kaori Matsushita
  • Hiroo Ogura
  • Tetsuhiro Niidome
  • Jeffrey L. Noebels
  • Minoru Wakamori
  • Keiji Imoto
  • Yasuo Mori
Ion channels, receptors and transporters


Cholinergically induced network activity is a useful analogue of theta rhythms involved in memory processing or epileptiform activity in the hippocampus, providing a powerful tool to elucidate the mechanisms of synchrony in neuronal networks. In absence epilepsy, although its association with cognitive impairments has been reported, the mechanisms underlying hippocampal synchrony remain poorly investigated. Here we simultaneously recorded electrical activities from 64 sites in hippocampal slices of CaV2.1 Ca2+ channel mutant tottering (tg) mice, a well-established mouse model of spontaneous absence epilepsy, to analyze the spatiotemporal pattern of cholinergically induced hippocampal network activity. The cholinergic agonist carbachol induced oscillatory discharges originating from the CA3 region. In tg/tg mice, this hippocampal network activity was characterized by enhanced occupancy of discharges of relatively high frequency (6–10 Hz) compared to the wild type. Pharmacological analyses of slices, patch clamp electrophysiological characterization of isolated neurons, and altered patterns of hippocampal GABAA receptor subunit and Cl transporter messenger RNA (mRNA) transcript levels revealed that this abnormality is attributable to a developmental retardation of GABAergic inhibition caused by immature intracellular Cl regulation. These results suggest that the inherited CaV2.1 Ca2+ channel mutation leads to developmental abnormalities in Cl transporter expression and GABAA receptor compositions in hippocampal neurons and that compromised maturation of GABAergic inhibition contributes to the abnormal synchrony in the hippocampus of tg absence epileptic mice.


CaV2.1 Ca2+ channel tottering mice Absence epilepsy Hippocampal network activity GABAergic maturation Cl homeostasis 

Supplementary material

424_2014_1555_MOESM1_ESM.pdf (735 kb)
ESM 1(PDF 734 kb)


  1. 1.
    Aldenkamp A, Arends J (2004) The relative influence of epileptic EEG discharges, short nonconvulsive seizures, and type of epilepsy on cognitive function. Epilepsia 45:54–63CrossRefPubMedGoogle Scholar
  2. 2.
    Angelotti TP, Uhler MD, Macdonald RL (1993) Assembly of GABAA receptor subunits: analysis of transient single-cell expression utilizing a fluorescent substrate/marker gene technique. J Neurosci 13:1418–1428PubMedGoogle Scholar
  3. 3.
    Austin JK (2009) The 2007 Judith Hoyer lecture. Epilepsy comorbidities: Lennox and lessons learned. Epilepsy Behav 14:3–7CrossRefPubMedGoogle Scholar
  4. 4.
    Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA (2000) Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of P/Q type calcium channels. Neuroscience 95:639–645CrossRefPubMedGoogle Scholar
  5. 5.
    Ballard TM, Knoflach F, Prinssen E, Borroni E, Vivian JA, Basile J, Gasser R, Moreau JL, Wettstein JG, Buettelmann B, Knust H, Thomas AW, Trube G, Hernandez MC (2009) RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors. Psychopharmacology (Berl) 202:207–223CrossRefGoogle Scholar
  6. 6.
    Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739CrossRefPubMedGoogle Scholar
  7. 7.
    Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820–838CrossRefPubMedGoogle Scholar
  8. 8.
    Buzsáki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570CrossRefPubMedGoogle Scholar
  9. 9.
    Buzsáki G (1998) Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 7(Suppl 1):17–23CrossRefPubMedGoogle Scholar
  10. 10.
    Buzsáki G, Horváth Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027CrossRefPubMedGoogle Scholar
  11. 11.
    Buzsáki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171CrossRefPubMedGoogle Scholar
  12. 12.
    Caddick SJ, Wang C, Fletcher CF, Jenkins NA, Copeland NG, Hosford DA (1999) Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4 lh) and tottering (Cacna1a tg) mouse thalami. J Neurophysiol 81:2066–2074PubMedGoogle Scholar
  13. 13.
    Caplan R, Siddarth P, Stahl L, Lanphier E, Vona P, Gurbani S, Koh S, Sankar R, Shields WD (2008) Childhood absence epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia 49:1838–1846CrossRefPubMedGoogle Scholar
  14. 14.
    Cornaggia CM, Beghi M, Provenzi M, Beghi E (2006) Correlation between cognition and behavior in epilepsy. Epilepsia 47(Suppl 2):34–39CrossRefPubMedGoogle Scholar
  15. 15.
    Dzhala VI, Staley KJ (2003) Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus. J Neurosci 23:1840–1846PubMedGoogle Scholar
  16. 16.
    Ebihara S, Shirato K, Harata N, Akaike N (1995) Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride. J Physiol 484:77–86CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120CrossRefPubMedGoogle Scholar
  18. 18.
    Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617CrossRefPubMedGoogle Scholar
  19. 19.
    Gambarana C, Beattie CE, Rodríguez ZR, Siegel RE (1991) Region-specific expression of messenger RNAs encoding GABAA receptor subunits in the developing rat brain. Neuroscience 45:423–432CrossRefPubMedGoogle Scholar
  20. 20.
    Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532CrossRefPubMedGoogle Scholar
  21. 21.
    Halász P, Kelemen A, Clemens B, Saracz J, Rosdy B, Rásonyi G, Szücs A (2005) The perisylvian epileptic network. A unifying concept. Ideggyogy Sz 58:21–31PubMedGoogle Scholar
  22. 22.
    Helekar SA, Noebels JL (1994) Analysis of voltage-gated and synaptic conductances contributing to network excitability defects in the mutant mouse tottering. J Neurophysiol 71:1–10PubMedGoogle Scholar
  23. 23.
    Johnston D, Brown TH (1984) The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Ann Neurol 16(Suppl):S65–S71CrossRefPubMedGoogle Scholar
  24. 24.
    Jouvenceau A, Eunson LH, Spauschus A, Ramesh V, Zuberi SM, Kullmann DM, Hanna MG (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358:801–807CrossRefPubMedGoogle Scholar
  25. 25.
    Kaja S, Hann V, Payne HL, Thompson CL (2007) Aberrant cerebellar granule cell-specific GABAA receptor expression in the epileptic and ataxic mouse mutant, Tottering. Neuroscience 148:115–125CrossRefPubMedGoogle Scholar
  26. 26.
    Khan OI, Zhao Q, Miller F, Holmes GL (2010) Interictal spikes in developing rats cause long-standing cognitive deficits. Neurobiol Dis 39:362–371CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Khazipov R, Khalilov I, Tyzio R, Morozova E, Ben-Ari Y, Holmes GL (2004) Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J Neurosci 19:590–600CrossRefPubMedGoogle Scholar
  28. 28.
    Kleen JK, Scott RC, Holmes GL, Lenck-Santini PP (2010) Hippocampal interictal spikes disrupt cognition in rats. Ann Neurol 67:250–257CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Kleen JK, Scott RC, Lenck-Santini PP, Holmes GL (2012) Cognitive and behavioral co-morbidities of epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information, BethesdaGoogle Scholar
  30. 30.
    Kowalczyk T, Bocian R, Konopacki J (2013) The generation of theta rhythm in hippocampal formation maintained in vitro. Eur J Neurosci 37:679–699CrossRefPubMedGoogle Scholar
  31. 31.
    Larson J, Lynch G (1986) Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science 232:985–988CrossRefPubMedGoogle Scholar
  32. 32.
    Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350CrossRefPubMedGoogle Scholar
  33. 33.
    Larson J, Xiao P, Lynch G (1993) Reversal of LTP by theta frequency stimulation. Brain Res 600:97–102CrossRefPubMedGoogle Scholar
  34. 34.
    Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172PubMedGoogle Scholar
  35. 35.
    Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39:558–568CrossRefPubMedGoogle Scholar
  36. 36.
    Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550:873–887CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Majak K, Pitkänen A (2004) Do seizures cause irreversible cognitive damage? Evidence from animal studies. Epilepsy Behav 5(Suppl 1):S35–S44CrossRefPubMedGoogle Scholar
  38. 38.
    Marques CM, Caboclo LO, da Silva TI, Noffs MH, Carrete H Jr, Lin K, Lin J, Sakamoto AC, Yacubian EM (2007) Cognitive decline in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsy Behav 10:477–485CrossRefPubMedGoogle Scholar
  39. 39.
    Meador KJ (2006) Cognitive and memory effects of the new antiepileptic drugs. Epilepsy Res 68:63–67CrossRefPubMedGoogle Scholar
  40. 40.
    Mehta AK, Ticku MK (1999) An update on GABAA receptors. Brain Res Rev 29:196–217CrossRefPubMedGoogle Scholar
  41. 41.
    Miki T, Zwingman TA, Wakamori M, Lutz CM, Cook SA, Hosford DA, Herrup K, Fletcher CF, Mori Y, Frankel WN, Letts VA (2008) Two novel alleles of tottering with distinct Ca(v)2.1 calcium channel neuropathologies. Neuroscience 155:31–44CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Montgomery SM, Buzsáki G (2007) Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci U S A 104:14495–14500CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T et al (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402CrossRefPubMedGoogle Scholar
  44. 44.
    Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K (2000) Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg rol). J Neurosci 20:5654–5662PubMedGoogle Scholar
  45. 45.
    Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60CrossRefPubMedGoogle Scholar
  46. 46.
    Noebels JL (1984) A single gene error of noradrenergic axon growth synchronizes central neurones. Nature 310:409–411CrossRefPubMedGoogle Scholar
  47. 47.
    Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 204:1334–1336CrossRefPubMedGoogle Scholar
  48. 48.
    O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109CrossRefPubMedGoogle Scholar
  49. 49.
    Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M (1999) A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 93:61–67CrossRefPubMedGoogle Scholar
  50. 50.
    Poulter MO, Barker JL, O'Carroll AM, Lolait SJ, Mahan LC (1992) Differential and transient expression of GABAA receptor α-subunit mRNAs in the developing rat CNS. J Neurosci 12:2888–2900PubMedGoogle Scholar
  51. 51.
    Qian J, Noebels JL (2000) Presynaptic Ca2+ influx at a mouse central synapse with Ca2+ channel subunit mutations. J Neurosci 20:163–170PubMedGoogle Scholar
  52. 52.
    Rajakulendran S, Graves TD, Labrum RW, Kotzadimitriou D, Eunson L, Davis MB, Davies R, Wood NW, Kullmann DM, Hanna MG, Schorge S (2010) Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J Physiol 588:1905–1913CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Sasaki S, Huda K, Inoue T, Miyata M, Imoto K (2006) Impaired feedforward inhibition of the thalamocortical projection in epileptic Ca2+ channel mutant mice, tottering. J Neurosci 26:3056–3065CrossRefPubMedGoogle Scholar
  54. 54.
    Shimono K, Brucher F, Granger R, Lynch G, Taketani M (2000) Origins and distribution of cholinergically induced β rhythms in hippocampal slices. J Neurosci 20:8462–8473PubMedGoogle Scholar
  55. 55.
    Shin R, Kobayashi K, Hagihara H, Kogan JH, Miyake S, Tajinda K, Walton NM, Gross AK, Heusner CL, Chen Q, Tamura K, Miyakawa T, Matsumoto M (2013) The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease. Bipolar Disord 15:405–421CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Sillanpää M, Jalava M, Kaleva O, Shinnar S (1998) Long-term prognosis of seizures with onset in childhood. N Engl J Med 338:1715–1722CrossRefPubMedGoogle Scholar
  57. 57.
    Stein V, Hermans-Borgmeyer I, Jentsch TJ, Hübner CA (2004) Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride. J Comp Neurol 468:57–64CrossRefPubMedGoogle Scholar
  58. 58.
    Suzuki SS, Smith GK (1987) Spontaneous EEG spikes in the normal hippocampus. I. Behavioral correlates, laminar profiles and bilateral synchrony. Electroencephalogr Clin Neurophysiol 67:348–359CrossRefPubMedGoogle Scholar
  59. 59.
    Swann JW, Smith KL, Brady RJ (1993) Localized excitatory synaptic interactions mediate the sustained depolarization of electrographic seizures in developing hippocampus. J Neurosci 13:4680–4689PubMedGoogle Scholar
  60. 60.
    Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM Jr (1997) Aberrant expression of GABAA receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 28:213–223CrossRefPubMedGoogle Scholar
  61. 61.
    Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747CrossRefPubMedGoogle Scholar
  62. 62.
    Urrestarazu E, Jirsch JD, LeVan P, Hall J, Avoli M, Dubeau F, Gotman J (2006) High-frequency intracerebral EEG activity (100–500 Hz) following interictal spikes. Epilepsia 47:1465–1476CrossRefPubMedGoogle Scholar
  63. 63.
    Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926CrossRefPubMedGoogle Scholar
  64. 64.
    Wakamori M, Yamazaki K, Matsunodaira H, Teramoto T, Tanaka I, Niidome T, Sawada K, Nishizawa Y, Sekiguchi N, Mori E, Mori Y, Imoto K (1998) Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 273:34857–34867CrossRefPubMedGoogle Scholar
  65. 65.
    Williams JH, Kauer JA (1997) Properties of carbachol-induced oscillatory activity in rat hippocampus. J Neurophysiol 78:2631–2640PubMedGoogle Scholar
  66. 66.
    Wong RK, Traub RD, Miles R (1986) Cellular basis of neuronal synchrony in epilepsy. Adv Neurol 44:583–592PubMedGoogle Scholar
  67. 67.
    Zwingman TA, Neumann PE, Noebels JL, Herrup K (2001) Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 21:1169–1178PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Akito Nakao
    • 1
  • Takafumi Miki
    • 1
  • Ken Shimono
    • 4
  • Hiroaki Oka
    • 4
  • Tomohiro Numata
    • 1
    • 2
  • Shigeki Kiyonaka
    • 1
    • 2
    • 3
  • Kaori Matsushita
    • 5
  • Hiroo Ogura
    • 6
  • Tetsuhiro Niidome
    • 7
  • Jeffrey L. Noebels
    • 8
  • Minoru Wakamori
    • 9
  • Keiji Imoto
    • 5
  • Yasuo Mori
    • 1
    • 2
    • 3
  1. 1.Department of Synthetic Chemistry and Biological Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of Technology and Ecology, Hall of Global Environmental ResearchKyoto UniversityKyotoJapan
  3. 3.Core Research for Evolution Science and TechnologyJapan Science and Technology AgencyChiyoda-kuJapan
  4. 4.Bioscience Technology Development OfficePanasonic CorporationKyotoJapan
  5. 5.Division of Neural Signaling, Department of Information PhysiologyNational Institute for Physiological SciencesMyodaijiJapan
  6. 6.Product Creation HeadquartersEisai Co., Ltd.TokyoJapan
  7. 7.Neuroscience Product Creation UnitEisai LimitedHatfieldUK
  8. 8.Department of NeurologyBaylor College of MedicineHoustonUSA
  9. 9.Department of Oral Biology, Graduate School of DentistryTohoku UniversitySendaiJapan

Personalised recommendations