Skip to main content

Advertisement

Log in

Kv4 channels underlie A-currents with highly variable inactivation time courses but homogeneous other gating properties in the nucleus tractus solitarii

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In the nucleus of the tractus solitarii (NTS), a large proportion of neurones express transient A-type potassium currents (I KA) having deep influence on the fidelity of the synaptic transmission of the visceral primary afferent inputs to second-order neurones. Up to now, the strong impact of I KA within the NTS was considered to result exclusively from its variation in amplitude, and its molecular correlate(s) remained unknown. In order to identify which Kv channels underlie I KA in NTS neurones, the gating properties and the pharmacology of this current were determined using whole cell patch clamp recordings in slices. Complementary information was brought by immunohistochemistry. Strikingly, two neurone subpopulations characterized by fast or slow inactivation time courses (respectively about 50 and 200 ms) were discriminated. Both characteristics matched those of the Kv4 channel subfamily. The other gating properties, also matching the Kv4 channel ones, were homogeneous through the NTS. The activation and inactivation occurred at membrane potentials around the threshold for generating action potentials, and the time course of recovery from inactivation was rapid. Pharmacologically, I KA in NTS neurones was found to be resistant to tetraethylammonium (TEA), sea anemone toxin blood-depressing substance (BDS) and dendrotoxin (DTX), whereas Androctonus mauretanicus mauretanicus toxin 3 (AmmTX3), a scorpion toxin of the α-KTX 15 family that has been shown to block all the members of the Kv4 family, inhibited 80 % of I KA irrespectively of its inactivation time course. Finally, immunohistochemistry data suggested that, among the Kv4 channel subfamily, Kv4.3 is the prevalent subunit expressed in the NTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amarillo Y, De Santiago-Castillo JA, Dougherty K, Maffie J, Kwon E, Covarrubias M, Rudy B (2008) Ternary Kv4.2 channels recapitulate voltage-dependent inactivation kinetics of A-type K+ channels in cerebellar granule neurons. J Physiol 586:2093–2106. doi:10.1113/jphysiol.2007.150540, PMID: 18276729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Amendola J, Woodhouse A, Martin-Eauclaire M-F, Goaillard J-M (2012) Ca2+/cAMP-sensitive covariation of IA and IH voltage dependences tunes rebound firing in dopaminergic neurons. J Neurosci 32:2166–2181. doi:10.1523/JNEUROSCI.5297-11.2012, PMID: 22323729

    Article  CAS  PubMed  Google Scholar 

  3. Appleyard SM, Marks D, Kobayashi K, Okano H, Low MJ, Andresen MC (2007) Visceral afferents directly activate catecholamine neurons in the solitary tract nucleus. J Neurosci 27:13292–13302, PMID: 18045923

    Article  CAS  PubMed  Google Scholar 

  4. Bailey TW, Hermes SM, Whittier KL, Aicher SA, Andresen MC (2007) A-type potassium channels differentially tune afferent pathways from rat solitary tract nucleus to caudal ventrolateral medulla or paraventricular hypothalamus. J Physiol 582:613–628, PMID: 17510187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bailey TW, Jin Y-H, Doyle MW, Andresen MC (2002) Vanilloid-sensitive afferents activate neurons with prominent A-type potassium currents in nucleus tractus solitarius. J Neurosci 22:8230–8237, PMID: 12223577

    CAS  PubMed  Google Scholar 

  6. Balland B, Lachamp P, Strube C, Kessler J-P, Tell F (2006) Glutamatergic synapses in the rat nucleus tractus solitarii develop by direct insertion of calcium-impermeable AMPA receptors and without activation of NMDA receptors. J Physiol 574:245–261, PMID: 16690712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Baude A, Strube C, Tell F, Kessler J-P (2009) Glutamatergic neurotransmission in the nucleus tractus solitarii: structural and functional characteristics. J Chem Neuroanat 38:145–153. doi:10.1016/j.jchemneu.2009.03.004, PMID: 19778680

    Article  CAS  PubMed  Google Scholar 

  8. Belugin S, Mifflin S (2005) Transient voltage-dependent potassium currents are reduced in NTS neurons isolated from renal wrap hypertensive rats. J Neurophysiol 94:3849–3859, PMID: 16293589

    Article  CAS  PubMed  Google Scholar 

  9. Bonham AC, Sekizawa S, Chen C-Y, Joad JP (2006) Plasticity of brainstem mechanisms of cough. Resp Physiol Neur 152:312–319, PMID: 16484366

    Article  Google Scholar 

  10. Brooke RE, Atkinson L, Batten TF, Deuchars SA, Deuchars J (2004) Association of potassium channel Kv3 subunits with pre- and post-synaptic structures in brainstem and spinal cord. Neurosci 126:1001–1010, PMID: 15207333

    Article  CAS  Google Scholar 

  11. Brooke RE, Atkinson L, Edwards I, Parson SH, Deuchars J (2006) Immunohistochemical localisation of the voltage gated potassium channel subunit Kv3.3 in the rat medulla oblongata and thoracic spinal cord. Brain Res 1070:101–115, PMID: 16403474

    Article  CAS  PubMed  Google Scholar 

  12. Burkhalter A, Gonchar Y, Mellor RL, Nerbonne JM (2006) Differential expression of IA channel subunits Kv4.2 and Kv4.3 in mouse visual cortical neurons and synapses. J Neurosci 26:12274–12282, PMID: 17122053

    Article  CAS  PubMed  Google Scholar 

  13. Castelfranco AM, Hartline DK (2004) Corrections for space-clamp errors in measured parameters of voltage-dependent conductances in a cylindrical neurite. Biol Cybern 90:280–290, PMID: 15085347

    Article  PubMed  Google Scholar 

  14. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Morena H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–255, PMID: 10414301

    Article  CAS  PubMed  Google Scholar 

  15. Dekin MS, Getting PA (1987) In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns. J Neurophysiol 58:215–229, PMID: 3612224

    CAS  PubMed  Google Scholar 

  16. Dufour A, Tell F, Baude A (2010) Perinatal development of inhibitory synapses in the nucleus tractus solitarii of the rat. Eur J Neurosci 32:538–549. doi:10.1111/j.1460-9568.2010.07309.x, PMID: 20718854

    Article  PubMed  Google Scholar 

  17. Hartline DK, Castelfranco AM (2003) Simulations of voltage clamping poorly space-clamped voltage-dependent conductances in a uniform cylindrical neurite. J Comput Neurosci 14:253–269, PMID: 12766427

    Article  PubMed  Google Scholar 

  18. Hermes SM, Mitchell JL, Aicher SA (2006) Most neurons in the nucleus tractus solitarii do not send collateral projections to multiple autonomic targets in the rat brain. Exp Neurol 198:539–551, PMID: 16487517

    Article  PubMed  Google Scholar 

  19. Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209, PMID: 9248061

    Article  CAS  PubMed  Google Scholar 

  20. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875, PMID: 9202119

    Article  CAS  PubMed  Google Scholar 

  21. Holmqvist MH, Cao J, Knoppers MH, Jurman ME, Distefano PS, Rhodes KJ, Xie Y, An WF (2001) Kinetic modulation of Kv4-mediated A-current by arachidonic acid is dependent on potassium channel interacting proteins. J Neurosci 21:4154–4161, PMID: 11404400

    CAS  PubMed  Google Scholar 

  22. Holmqvist MH, Cao J, Hernadez-Pineda R, Jacobson MD, Caroll KI, Sung MA, Betty M, Ge P, Gilbride KJ, Brown ME, Jurman ME, Lawson D, Silos-Santigo I, Xie Y, Covarrubias M, Rhodes KJ, Ps D, An WF (2002) Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain. PNAS 99:1035–1040, PMID: 9202119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jerng HH, Kunjilwar K, Pfaffinger PJ (2005) Multiprotein assembly of Kv4.2, KChIP3 and DPP10 produces ternary channel complexes with ISA-like properties. J Physiol 568:767–788, PMID: 16123112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jerng HH, Lauver AD, Pfaffinger PJ (2007) DPP10 splice variants are localized in distinct neuronal populations and act to differentially regulate the inactivation properties of Kv4-based ion channels. Mol Cell Neurosci 35:604–624, PMID: 17475505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Jerng HH, Pfaffinger PJ (2012) Incorporation of DPP6a and DPP6K variants in ternary Kv4 channel complex reconstitutes properties of A-type K current in rat cerebellar granule cells. Bondarenko VE, ed. PLoS ONE 7:e38205. doi: 10.1371/journal.pone.0038205. PMID: 22675523

  26. Jerng HH, Pfaffinger PJ, Covarrubias M (2004) Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 27:343–369, PMID: 15555915

    Article  CAS  PubMed  Google Scholar 

  27. Johnston D, Brown TH (1983) Interpretation of voltage-clamp measurements in hippocampal neurons. J Neurophysiol 50:464–486, PMID: 6310063

    CAS  PubMed  Google Scholar 

  28. Kim J, Hoffman DA (2008) Potassium channels: newly found players in synaptic plasticity. Neuroscientist 14:276–286. doi:10.1177/1073858408315041, PMID: 18413784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. King MS, Bradley RM (1994) Relationship between structure and function of neurons in the rat rostral nucleus tractus solitarii. J Comp Neurol 344:50–64, PMID: 8063955

    Article  CAS  PubMed  Google Scholar 

  30. Maffie J, Rudy B (2008) Weighing the evidence for a ternary protein complex mediating A-type K + currents in neurons. J Physiol 586:5609–5623. doi:10.1113/jphysiol.2008.161620, PMID: 18845608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Maffie JK, Dvoretskova E, Bougis PE, Martin-Eauclaire M-F, Rudy B (2013) Dipeptidyl-peptidase-like-proteins confer high sensitivity to the scorpion toxin AmmTX3 to Kv4-mediated A-type K+ channels. J Physiol 591:2419–2427. doi:10.1113/jphysiol.2012.248831, PMID: 23440961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Moak JP, Kunze DL (1993) Potassium currents of neurons isolated from medical nucleus tractus solitarius. Am J Physiol 265:1596–1602, PMID: 7694508

    Google Scholar 

  33. Nakamura TY, Pountney DJ, Ozaita A, Nandi S, Ueda S, Rudy B, Coetzee WA (2001) A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents. Proc Natl Acad Sci U S A 98:12808–12813, PMID: 11606724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Norris AJ, Nerbonne JM (2010) Molecular dissection of IA in cortical pyramidal neurons reveals three distinct components encoded by Kv4.2, Kv4.3, and Kv1.4 α-subunits. J Neurosci 30:5092–5101. doi:10.1016/j.neulet.2010.08.067, PMID: 20813163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Pan Y, Weng J, Kabaleeswaran V, Li H, Cao Y, Bhosle RC, Zhou M (2008) Cortisone dissociates the Shaker family K+ channels from their beta subunits. Nat Chem Biol 4:708–714. doi:10.1038/nchembio.114, PMID: 18806782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Paton JF, Foster WR, Schwaber JS (1993) Characteristic firing behavior of cell types in the cardiorespiratory region of the nucleus tractus solitarii of the rat. Brain Res 604:112–125, PMID: 8457840

    Article  CAS  PubMed  Google Scholar 

  37. Pongs O (1999) Voltage-gated potassium channels: from hyperexcitability to excitement. FEBS Lett 452:31–35, PMID: 10376673

    Article  CAS  PubMed  Google Scholar 

  38. Pongs O, Schwarz JR (2010) Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev 90:755–796. doi:10.1152/physrev.00020.2009, PMID: 20393197

    Article  CAS  PubMed  Google Scholar 

  39. Rasmusson RL, Morales MJ, Castellino RC, Zhang Y, Campbell DL, Strauss HC (1995) C-type inactivation controls recovery in a fast inactivating cardiac K+ channel (Kv1.4) expressed in Xenopus oocytes. J Physiol 489:709–721, PMID: 7890764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Riazanski V, Becker A, Chen J, Sochivko D, Lie A, Wiestler OD, Elger CE, Beck H (2001) Functional and molecular analysis of transient voltage-dependent K+ currents in rat hippocampal granule cells. J Physiol Lond 537:391–406, PMID: 11731573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rybak IA, Paton JFR, Schwaber JS (1997) Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. models of respiratory neurons. J Neurophysiol 77:1994–2006, PMID: 9114250

    CAS  PubMed  Google Scholar 

  42. Schaefer AT, Helmstaedter M, Sakmann B, Korngreen A (2003) Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated K+ channels. Biophys J 84:3508–3528, PMID: 12770864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Schild JH, Khushalani S, Clark JW, Andresen MC, Kunze DL, Yang M (1993) An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input. J Physiol 469:341–363, PMID: 7505824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sekizawa S, Joad JP, Pinkerton KE, Bonham AC (2010) Secondhand smoke exposure alters K+ channel function and intrinsic cell excitability in a subset of second-order airway neurons in the nucleus tractus solitarius of young guinea pigs. Eur J Neurosci 31:673–684. doi:10.1016/j.taap.2009.10.009, PMID: 19850058

    Article  PubMed  Google Scholar 

  45. Serôdio P, Rudy B (1998) Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. J Neurophysiol 79:1081–1091, PMID: 9463463

    PubMed  Google Scholar 

  46. Shi W, Wymore RS, Wang H-S, Pan Z, Cohen IS, McKinnon D, Dixon JE (1997) Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci 17:9423–9432, PMID: 9390998

    CAS  PubMed  Google Scholar 

  47. Sutton GM, Patterson LM, Berthoud H-R (2004) Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats. J Neurosci 24:10240–10247, PMID: 15537896

    Article  CAS  PubMed  Google Scholar 

  48. Suwabe T, Bradley RM (2009) Characteristics of rostral solitary tract nucleus neurons with identified afferent connections that project to the parabrachial nucleus in rats. J Neurophysiol 102:546–555. doi:10.1152/jn.91182.2008, PMID: 19439671

    Article  PubMed Central  PubMed  Google Scholar 

  49. Tell F, Bradley RM (1994) Whole-cell analysis of ionic currents underlying the firing pattern of neurons in the gustatory zone of the nucleus tractus solitarii. J Neurophysiol 71:479–492, PMID: 7513751

    CAS  PubMed  Google Scholar 

  50. Travagli RA, Hermann GE, Browning KN, Rogers RC (2006) Brainstem circuits regulating functions. Annu Rev Plant Physiol 68:279–305, PMID: 16460274

    Article  CAS  Google Scholar 

  51. Vacher H, Alami M, Crest M, Possani LD, Bougis PE, Martin-Eauclaire M-F (2002) Expanding the scorpion toxin α-KTX 15 family with AmmTX3 from Androctonus mauretanicus: expanding the scorpion toxin α-KTX 15 family. Eur J Biochem 269:6037–6041, PMID: 12473099

    Article  CAS  PubMed  Google Scholar 

  52. Vacher H, Diochot S, Bougis PE, Martin-Eauclaire M-F, Mourre C (2006) Kv4 channels sensitive to BmTX3 in rat nervous system: autoradiographic analysis of their distribution during brain ontogenesis . Eur J Neurosci 24:1325–1340. PMID: 16987219

  53. Vincent A, Tell F (1997) Postnatal changes in electrophysiological properties of rat nucleus tractus solitarii neurons. Eur J Neurosci 9:1612–1624, PMID: 9283816

    Article  CAS  PubMed  Google Scholar 

  54. Vincent A, Tell D (1999) Postnatal development of rat nucleus tractus solitarius neurons: morphological and electrophysiological evidence. Neuroscience 93:293–305, PMID: 10430493

    Article  CAS  PubMed  Google Scholar 

  55. Wang M, Bradley RM (2010) Properties of GABAergic neurons in the rostral solitary tract nucleus in mice. J Neurophysiol 103:3205–3218. doi:10.1152/jn.00971.2009, PMID: 20375246

    Article  PubMed Central  PubMed  Google Scholar 

  56. Yeung SY, Thompson D, Wang Z, Fedida D, Robertson B (2005) Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: significance for CNS and biophysical studies. J Neurosci 25:8735–8745, PMID: 16177043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, McCornmack T, Akinsanya KO, Qi SY, Rudy B (2005) DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem 280:18853–18861, PMID: 15671030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU), Agence De l’Environnement et de la Maîtrise de l‘Energie and Région Provence-Alpes-Côte d’Azur (ADEME/Région PACA, fellowship to LS).

We are grateful to Jean-Pierre Kessler for performing immunohistochemical experiments. We also thank Dr. Brigitte Céard for her technical assistance in the production of the toxin AmmTX3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Clerc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strube, C., Saliba, L., Moubarak, E. et al. Kv4 channels underlie A-currents with highly variable inactivation time courses but homogeneous other gating properties in the nucleus tractus solitarii. Pflugers Arch - Eur J Physiol 467, 789–803 (2015). https://doi.org/10.1007/s00424-014-1533-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1533-z

Keywords

Navigation