Pflügers Archiv - European Journal of Physiology

, Volume 467, Issue 2, pp 311–328 | Cite as

Neuronal expression of the intermediate conductance calcium-activated potassium channel KCa3.1 in the mammalian central nervous system

  • Ray W. TurnerEmail author
  • Mirna Kruskic
  • Michelle Teves
  • Teresa Scheidl-Yee
  • Shahid Hameed
  • Gerald W. Zamponi
Ion channels, receptors and transporters


The expression pattern and functional roles for calcium-activated potassium channels of the KCa2.x family and KCa1.1 have been extensively examined in central neurons. Recent work indicates that intermediate conductance calcium-activated potassium channels (KCa3.1) are also expressed in central neurons of the cerebellum and spinal cord. The current study used immunocytochemistry and GFP linked to KCNN4 promoter activity in a transgenic mouse to determine the expression pattern of KCa3.1 channels in rat or mouse neocortex, hippocampus, thalamus, and cerebellum. KCa3.1 immunolabel and GFP expression were closely matched and detected in both excitatory and inhibitory cells of all regions examined. KCa3.1 immunolabel was localized primarily to the somatic region of excitatory cells in cortical structures but at the soma and over longer segments of dendrites of cells in deep cerebellar nuclei. More extensive labeling was apparent for inhibitory cells at the somatic and dendritic level with no detectable label associated with axon tracts or regions of intense synaptic innervation. The data indicate that KCa3.1 channels are expressed in the CNS with a differential pattern of distribution between cells, suggesting important functional roles for these calcium-activated potassium channels in regulating the excitability of central neurons.


KCa3.1 IKCa KCNN4 SK4 Potassium channel 



We gratefully acknowledge L. Chen for expert technical assistance, the generous preparation and donation of fixed GAD67-GFP knock-in mouse brains by J-C. Lacaille and I. Laplante (Université de Montréal, Canada) originally supplied by Y. Yanagawa (Gunma University, Japan), and D.E. Rancourt and F.R. Jirik for advice in the design of a BAC construct. This work was supported by operating grants from the Canadian Institute of Health Research (R.W.T., G.W.Z.) and a studentship through Alberta Innovates—Health Solutions (AI-HS) (M.T.). R.W.T. and G.W.Z. are AI-HS Scientists and G.W.Z. holds a Canada Research Chair.


  1. 1.
    Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+−activated K+ channels: form and function. Annu Rev Physiol 74:245–269. doi: 10.1146/annurev-physiol-020911-153336 PubMedCrossRefGoogle Scholar
  2. 2.
    Akakin D, Sirvanci S, Gurbanova A, Aker R, Onat F, San T (2011) Ultrastructural GABA immunocytochemistry in the mossy fiber terminals of Wistar and genetic absence epileptic rats receiving amygdaloid kindling stimulations. Brain Res 1377:101–108. doi: 10.1016/j.brainres.2010.12.066 PubMedCrossRefGoogle Scholar
  3. 3.
    Allen D et al (2011) The SK2-long isoform directs synaptic localization and function of SK2-containing channels. Nat Neurosci 14:744–749. doi: 10.1038/nn.2832 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Andrade R, Foehring RC, Tzingounis AV (2012) The calcium-activated slow AHP: cutting through the Gordian knot. Front Cell Neurosci 6:47. doi: 10.3389/fncel.2012.00047 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ballesteros-Merino C et al (2012) Developmental profile of SK2 channel expression and function in CA1 neurons. Hippocampus 22:1467–1480. doi: 10.1002/hipo.20986 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Barmeyer C, Rahner C, Yang Y, Sigworth FJ, Binder HJ, Rajendran VM (2010) Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am J Physiol Cell Physiol 299:C251–C263. doi: 10.1152/ajpcell.00091.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Bednarczyk P (2009) Potassium channels in brain mitochondria. Acta Biochim Pol 56:385–392PubMedGoogle Scholar
  8. 8.
    Begenisich T et al (2004) Physiological roles of the intermediate conductance, Ca2+−activated potassium channel Kcnn4. J Biol Chem 279:47681–47687. doi: 10.1074/jbc.M409627200 PubMedCrossRefGoogle Scholar
  9. 9.
    Belmeguenai A et al (2010) Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci 30:13630–13643. doi: 10.1523/JNEUROSCI.3226-10.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Benhassine N, Berger T (2005) Homogeneous distribution of large-conductance calcium-dependent potassium channels on soma and apical dendrite of rat neocortical layer 5 pyramidal neurons. Eur J Neurosci 21:914–926. doi: 10.1111/j.1460-9568.2005.03934.x PubMedCrossRefGoogle Scholar
  11. 11.
    Berkefeld H, Fakler B, Schulte U (2010) Ca2+−activated K+ channels: from protein complexes to function. Physiol Rev 90:1437–1459. doi: 10.1152/physrev.00049.2009 PubMedCrossRefGoogle Scholar
  12. 12.
    Boettger MK et al (2002) Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain 125:252–263PubMedCrossRefGoogle Scholar
  13. 13.
    Bond CT et al (2004) Small conductance Ca2+−activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J Neurosci 24:5301–5306. doi: 10.1523/JNEUROSCI.0182-04.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bouhy D et al (2011) Inhibition of the Ca(2)(+)-dependent K(+) channel, KCNN4/KCa3.1, improves tissue protection and locomotor recovery after spinal cord injury. J Neurosci 31:16298–16308. doi: 10.1523/JNEUROSCI.0047-11.2011 PubMedCrossRefGoogle Scholar
  15. 15.
    Chen YJ, Raman G, Bodendiek S, O’Donnell ME, Wulff H (2011) The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a rat model of ischemia/reperfusion stroke. J Cereb Blood Flow Metab 31:2363–2374. doi: 10.1038/jcbfm.2011.101 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    De Marchi U et al (2009) Intermediate conductance Ca2+−activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45:509–516. doi: 10.1016/j.ceca.2009.03.014 PubMedCrossRefGoogle Scholar
  17. 17.
    Engbers JDT et al (2012) Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 109:2601–2606. doi: 10.1073/pnas.1115024109 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ernst C, Christie BR (2006) Isolectin-IB 4 as a vascular stain for the study of adult neurogenesis. J Neurosci Methods 150:138–142. doi: 10.1016/j.jneumeth.2005.06.018 PubMedCrossRefGoogle Scholar
  19. 19.
    Fanger CM et al (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 274:5746–5754PubMedCrossRefGoogle Scholar
  20. 20.
    Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Furness JB et al (2003) Expression of intermediate conductance potassium channel immunoreactivity in neurons and epithelial cells of the rat gastrointestinal tract. Cell Tissue Res 314:179–189. doi: 10.1007/s00441-003-0808-z PubMedCrossRefGoogle Scholar
  22. 22.
    Furness JB et al (2004) Intermediate conductance potassium (IK) channels occur in human enteric neurons. Auton Neurosci 112:93–97. doi: 10.1016/j.autneu.2004.02.003 PubMedCrossRefGoogle Scholar
  23. 23.
    Gardos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30:653–654PubMedCrossRefGoogle Scholar
  24. 24.
    Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME (2002) Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 37:229–240. doi: 10.1002/glia.10031 PubMedCrossRefGoogle Scholar
  25. 25.
    Gulledge AT, Dasari S, Onoue K, Stephens EK, Hasse JM, Avesar D (2013) A sodium-pump-mediated afterhyperpolarization in pyramidal neurons. J Neurosci 33:13025–13041. doi: 10.1523/JNEUROSCI.0220-13.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hu H, Vervaeke K, Storm JF (2007) M-channels (Kv7/KCNQ channels) that regulate synaptic integration, excitability, and spike pattern of CA1 pyramidal cells are located in the perisomatic region. J Neurosci 27:1853–1867. doi: 10.1523/JNEUROSCI.4463-06.2007 PubMedCrossRefGoogle Scholar
  27. 27.
    Hu H et al (2001) Presynaptic Ca2+−activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21:9585–9597PubMedGoogle Scholar
  28. 28.
    Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 94:11651–11656PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Jensen BS, Strobaek D, Olesen SP, Christophersen P (2001) The Ca2+−activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2:401–422PubMedCrossRefGoogle Scholar
  30. 30.
    Jensen BS et al (1998) Characterization of the cloned human intermediate-conductance Ca2+−activated K+ channel. Am J Physiol 275:C848–C856PubMedGoogle Scholar
  31. 31.
    Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci U S A 94:11013–11018PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kanazawa H, Ohsawa K, Sasaki Y, Kohsaka S, Imai Y (2002) Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma-dependent pathway. J Biol Chem 277:20026–20032. doi: 10.1074/jbc.M109218200 PubMedCrossRefGoogle Scholar
  33. 33.
    Kaushal V, Koeberle PD, Wang Y, Schlichter LC (2007) The Ca2+−activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci 27:234–244. doi: 10.1523/JNEUROSCI.3593-06.2007 PubMedCrossRefGoogle Scholar
  34. 34.
    Khanna R, Roy L, Zhu X, Schlichter LC (2001) K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol 280:C796–C806PubMedGoogle Scholar
  35. 35.
    Klocker N, Oliver D, Ruppersberg JP, Knaus HG, Fakler B (2001) Developmental expression of the small-conductance Ca(2+)-activated potassium channel SK2 in the rat retina. Mol Cell Neurosci 17:514–520. doi: 10.1006/mcne.2000.0956 PubMedCrossRefGoogle Scholar
  36. 36.
    Lancaster B, Nicoll RA (1987) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol 389:187–203PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ledoux J et al (2008) Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 105:9627–9632. doi: 10.1073/pnas.0801963105 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176. doi: 10.1038/nature05453 PubMedCrossRefGoogle Scholar
  39. 39.
    Liang Z et al (2011) Control of hypothalamic-pituitary-adrenal stress axis activity by the intermediate conductance calcium-activated potassium channel, SK4. J Physiol 589:5965–5986. doi: 10.1113/jphysiol.2011.219378 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272:32723–32726PubMedCrossRefGoogle Scholar
  41. 41.
    Maezawa I, Zimin PI, Wulff H, Jin LW (2011) Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem 286:3693–3706. doi: 10.1074/jbc.M110.135244 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Misonou H et al (2006) Immunolocalization of the Ca2+−activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol 496:289–302. doi: 10.1002/cne.20931 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Mongan LC et al (2005) The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system. Neuroscience 131:161–175. doi: 10.1016/j.neuroscience.2004.09.062 PubMedCrossRefGoogle Scholar
  44. 44.
    Murthy SR et al (2008) Identification and characterization of a novel, shorter isoform of the small conductance Ca2+−activated K+ channel SK2. J Neurochem 106:2312–2321. doi: 10.1111/j.1471-4159.2008.05557.x PubMedCrossRefGoogle Scholar
  45. 45.
    Nagy A, Gertsenstein M, Vintersten K, Behringer RR (2003) Manipulating the mouse embryo: a laboratory manual, 3rd edn. Cold Spring Harbor Press, NYGoogle Scholar
  46. 46.
    Neylon CB et al (2004) Intermediate-conductance calcium-activated potassium channels in enteric neurones of the mouse: pharmacological, molecular and immunochemical evidence for their role in mediating the slow afterhyperpolarization. J Neurochem 90:1414–1422. doi: 10.1111/j.1471-4159.2004.02593.x PubMedCrossRefGoogle Scholar
  47. 47.
    Nguyen TV et al (2007) Effects of compounds that influence IK (KCNN4) channels on afterhyperpolarizing potentials, and determination of IK channel sequence, in guinea pig enteric neurons. J Neurophysiol 97:2024–2031. doi: 10.1152/jn.00935.2006 PubMedCrossRefGoogle Scholar
  48. 48.
    Obermair GJ, Kaufmann WA, Knaus HG, Flucher BE (2003) The small conductance Ca2+−activated K+ channel SK3 is localized in nerve terminals of excitatory synapses of cultured mouse hippocampal neurons. Eur J Neurosci 17:721–731PubMedCrossRefGoogle Scholar
  49. 49.
    Ohtsuki G, Piochon C, Adelman JP, Hansel C (2012) SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Neuron 75:108–120. doi: 10.1016/j.neuron.2012.05.025 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Ohya S, Niwa S, Yanagi A, Fukuyo Y, Yamamura H, Imaizumi Y (2011) Involvement of dominant-negative spliced variants of the intermediate conductance Ca2+−activated K+ channel, K(Ca)3.1, in immune function of lymphoid cells. J Biol Chem 286:16940–16952. doi: 10.1074/jbc.M110.184192 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier, AmsterdamGoogle Scholar
  52. 52.
    Pedarzani P, Stocker M (2008) Molecular and cellular basis of small- and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell Mol Life Sci 65:3196–3217. doi: 10.1007/s00018-008-8216-x PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Pelucchi B, Grimaldi A, Moriondo A (2008) Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation. J Neurosci Res 86:194–201. doi: 10.1002/jnr.21467 PubMedCrossRefGoogle Scholar
  54. 54.
    Rehak R, Bartoletti TM, Engbers JDT, Berecki G, Turner RW, Zamponi GW (2013) Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 8:e61844PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG (2004) Comparative immunohistochemical distribution of three small-conductance Ca2+−activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol Cell Neurosci 26:458–469PubMedCrossRefGoogle Scholar
  56. 56.
    Sailer CA et al (2002) Regional differences in distribution and functional expression of small-conductance Ca2+−activated K+ channels in rat brain. J Neurosci 22:9698–9707PubMedGoogle Scholar
  57. 57.
    Sandow SL, Neylon CB, Chen MX, Garland CJ (2006) Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (K(Ca)) and connexins: possible relationship to vasodilator function? J Anat 209:689–698. doi: 10.1111/j.1469-7580.2006.00647.x PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Si H et al (2006) Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+−activated K+ channel. Circ Res 99:537–544. doi: 10.1161/01.RES.0000238377.08219.0c PubMedCrossRefGoogle Scholar
  59. 59.
    Singh SK, O’Hara B, Talukder JR, Rajendran VM (2012) Aldosterone induces active K(+) secretion by enhancing mucosal expression of Kcnn4c and Kcnma1 channels in rat distal colon. Am J Physiol Cell Physiol 302:C1353–C1360. doi: 10.1152/ajpcell.00216.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Stocker M (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5:758–770. doi: 10.1038/nrn1516 PubMedCrossRefGoogle Scholar
  61. 61.
    Stocker M, Pedarzani P (2000) Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 15:476–493. doi: 10.1006/mcne.2000.0842 PubMedCrossRefGoogle Scholar
  62. 62.
    Stoneking CJ, Shivikumar O, Nicholson Thomas D, Colledge WH, Mason MJ (2013) Voltage dependence of the Ca2+−activated K+ channel KCa3.1 in human erythroleukemia cells. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00368.2012 PubMedGoogle Scholar
  63. 63.
    Strassmaier T, Bond CT, Sailer CA, Knaus HG, Maylie J, Adelman JP (2005) A novel isoform of SK2 assembles with other SK subunits in mouse brain. J Biol Chem 280:21231–21236. doi: 10.1074/jbc.M413125200 PubMedCrossRefGoogle Scholar
  64. 64.
    Strobaek D et al (2013) NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 168:432–444. doi: 10.1111/j.1476-5381.2012.02143.x PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79. doi: 10.1002/cne.10905 PubMedCrossRefGoogle Scholar
  66. 66.
    Thompson J, Begenisich T (2006) Membrane-delimited inhibition of maxi-K channel activity by the intermediate conductance Ca2+−activated K channel. J Gen Physiol 127:159–169. doi: 10.1085/jgp.200509457 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Tzingounis AV, Nicoll RA (2008) Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A 105:19974–19979. doi: 10.1073/pnas.0810535105 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Tzingounis AV et al (2010) The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A 107:10232–10237. doi: 10.1073/pnas.1004644107 PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Vogalis F, Harvey JR, Furness JB (2002) TEA- and apamin-resistant K(Ca) channels in guinea-pig myenteric neurons: slow AHP channels. J Physiol 538:421–433PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Vogalis F, Harvey JR, Neylon CB, Furness JB (2002) Regulation of K+ channels underlying the slow afterhyperpolarization in enteric afterhyperpolarization-generating myenteric neurons: role of calcium and phosphorylation. Clin Exp Pharmacol Physiol 29:935–943PubMedCrossRefGoogle Scholar
  71. 71.
    Wang J et al (2006) An improved recombineering approach by adding RecA to lambda Red recombination. Mol Biotechnol 32:43–53PubMedCrossRefGoogle Scholar
  72. 72.
    Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57:463–472. doi: 10.1124/pr.57.4.9 PubMedCrossRefGoogle Scholar
  73. 73.
    Wulff H, Castle NA (2010) Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3:385–396. doi: 10.1586/ecp.10.11 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437–1457PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang L, Kolaj M, Renaud LP (2010) Ca2+−dependent and Na+−dependent K+ conductances contribute to a slow AHP in thalamic paraventricular nucleus neurons: a novel target for orexin receptors. J Neurophysiol 104:2052–2062. doi: 10.1152/jn.00320.2010 PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang L, Renaud LP, Kolaj M (2009) Properties of a T-type Ca2+ channel-activated slow afterhyperpolarization in thalamic paraventricular nucleus and other thalamic midline neurons. J Neurophysiol 101:2741–2750PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ray W. Turner
    • 1
    • 2
    Email author
  • Mirna Kruskic
    • 1
  • Michelle Teves
    • 1
  • Teresa Scheidl-Yee
    • 3
  • Shahid Hameed
    • 2
  • Gerald W. Zamponi
    • 2
  1. 1.Department of Cell Biology and Anatomy, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
  2. 2.Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations