Skip to main content
Log in

Dynamics of inhibitory co-transmission, membrane potential and pacemaker activity determine neuromyogenic function in the rat colon

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Interaction of different neuromyogenic mechanisms determines colonic motility. In rats, cyclic depolarizations and slow waves generate myogenic contractions of low frequency (LF) and high frequency (HF), respectively. Interstitial cells of Cajal (ICC) located near the submuscular plexus (SMP) generate slow waves. Inhibitory junction potential (IJP) consists on a purinergic fast (IJPf) followed by a nitrergic slow (IJPs) component leading to relaxation. In the present study, we characterized (1) the dynamics of purinergic-nitrergic inhibitory co-transmission and (2) its contribution on prolonged inhibition of myogenic activity. Different protocols of electrical field stimulation (EFS) under different pharmacological conditions were performed to characterize electrophysiological and mechanical responses. Smooth muscle cells (SMCs) in tissue devoid of ICC-SMP had a resting membrane potential (RMP) of −40.7 ± 0.7 mV. Single pulse protocols increased purinergic and nitrergic IJP amplitude in a voltage-dependent manner (IJPfMAX = −26.4 ± 0.6 mV, IJPsMAX = −6.7 ± 0.3 mV). Trains at increasing frequencies enhanced nitrergic (k = 0.8 ± 0.2 s, IJPs = −15 ± 0.5 mV) whereas they attenuated purinergic responses (k = 3.4 ± 0.6 s,IJPf = −8.9 ± 0.6 mV). In tissues with intact ICC-SMP, the RMP was −50.0 ± 0.9 mV and nifedipine insensitive slow waves (10.1 ± 2.0 mV, 10.3 ± 0.5 cpm) were recorded. In these cells, (1) nitrergic and purinergic responses were reduced and (2) slow waves maintained their intrinsic frequency and increased their amplitude under nerve-mediated hyperpolarization. Based on the co-transmission process and consistent with the expected results on RMP, prolonged EFS caused a progressive reduction of LF contractions whereas HF contractions were partially insensitive. In conclusion, inhibitory neurons modulate colonic spontaneous motility and the principles determining post-junctional responses are (1) the frequency of firing that determines the neurotransmitter/receptor involved, (2) the transwall gradient and (3) the origin and nature of each myogenic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADPβS:

Adenosine 5′-Ο-2-thiodiphosphate

β-NAD:

β-Nicotinamide adenine dinucleotide

CO:

Carbon monoxide

EFS:

Electrical field stimulation

ENS:

Enteric nervous system

HF:

High frequency

ICC:

Interstitial cells of Cajal

IJP:

Inhibitory junction potential

KO:

Knockout

LF:

Low frequency

L-NNA:

N ω-Nitro-l-arginine

MRS2500:

(1R,2S,4S,5S)-4-[2-Iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicycle [3.1.0]hexane-1-methanol dihydrogen phosphate ester diammonium salt

NANC:

Non-adrenergic non-cholinergic

NO:

Nitric oxide

NOS:

Nitric oxide synthase

ODQ:

Oxadiazolo[4,3-α]quinoxalin-1-one

PDGRFα + cells:

Fibroblast-like cells

RMP:

Resting membrane potential

SEM:

Standard error of the mean

SMC:

Smooth muscle cell

References

  1. Alberti E, Mikkelsen HB, Larsen JO, Jimenez M (2005) Motility patterns and distribution of interstitial cells of Cajal and nitrergic neurons in the proximal, mid- and distal-colon of the rat. Neurogastroenterol Motil 17:133–147, PMID: 15670273

    Article  CAS  PubMed  Google Scholar 

  2. Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM (2013) Distribution and Ca2+ signalling of fibroblast-like (PDGFR+) cells in the murine gastric fundus. J Physiol 591:6193–6208. doi:10.1113/jphysiol.2013.264747, PMID: 24144881

    Article  CAS  PubMed  Google Scholar 

  3. Bauer AJ, Reed JB, Sanders KM (1985) Slow wave heterogeneity within the circular muscle of the canine gastric antrum. J Physiol 366:221–232, PMID: 4057090

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345:346–347, PMID: 1971425

    Article  CAS  PubMed  Google Scholar 

  5. Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248, PMID: 11370511

    Article  CAS  PubMed  Google Scholar 

  6. Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52, PMID: 15018838

    Article  CAS  PubMed  Google Scholar 

  7. Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688, PMID: 4322041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chaudhury A, He XD, Goyal RK (2012) Role of myosin Va in purinergic vesicular neurotransmission in the gut. Am J Physiol Gastrointest Liver Physiol 302:G598–G607. doi:10.1152/ajpgi.00330.2011, PMID: 22207579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chen JH, Zhang Q, Yu Y, Li K, Liao H, Jiang L, Hong L, Du X, Hu X, Chen S, Yin S, Gao Q, Yin X, Luo H, Huizinga JD (2013) Neurogenic and myogenic properties of pan-colonic motor patterns and their spatiotemporal organization in rats. PLoSOne 8:e60474. doi:10.1371/journal.pone.0060474, PMID: 23577116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Costa M, Dodds KN, Wiklendt L, Spencer NJ, Brookes SJ, Dinning PG (2013) Neurogenic and myogenic motor activity in the colon of the guinea-pig, mouse, rabbit and rat. Am J Physiol Gastrointest Liver Physiol 305(10):G749–G759. doi:10.1152/ajpgi.00227.2013, PMID: 24052530

    Google Scholar 

  11. Crist JR, He XD, Goyal RK (1992) Both ATP and the peptide VIP are inhibitory neurotransmitters in guinea-pig ileum circular muscle. J Physiol 447:119–131, PMID: 1593443

    CAS  PubMed Central  PubMed  Google Scholar 

  12. De Man JG, De Winter BY, Herman AG, Pelckmans PA (2007) Study on the cyclic GMP-dependency of relaxations to endogenous and exogenous nitric oxide in the mouse gastrointestinal tract. Br J Pharmacol 150:88–96, PMID: 17115067

    Article  PubMed Central  PubMed  Google Scholar 

  13. Durnin L, Hwang SJ, Ward SM, Sanders KM, Mutafova-Yambolieva VN (2012) Adenosine 5-diphosphate-ribose is a neural regulator in primate and murine large intestine along with beta-NAD(+). J Physiol 590:1921–1941. doi:10.1113/jphysiol.2011.222414, PMID: 22351627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Farrugia G, Lei S, Lin X, Miller SM, Nath KA, Ferris CD, Levitt M, Szurszewski JH (2003) A major role for carbon monoxide as an endogenous hyperpolarizing factor in the gastrointestinal tract. Proc Natl Acad Sci U S A 100:8567–8570, PMID: 12832617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ferre JP, Ruckebusch Y (1985) Myoelectrical activity and propulsion in the large intestine of fed and fasted rats. J Physiol 362:93–106, PMID: 389462

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Gallego D, Gil V, Aleu J, Auli M, Clave P, Jimenez M (2008) Purinergic and nitrergic junction potential in the human colon. Am J Physiol Gastrointest Liver Physiol 295:G522–G533. doi:10.1152/ajpgi.00510.2007, PMID: 18599588

    Article  CAS  PubMed  Google Scholar 

  17. Gallego D, Gil V, Martinez-Cutillas M, Mane N, Martin MT, Jimenez M (2012) Purinergic neuromuscular transmission is absent in the colon of P2Y(1) knocked out mice. J Physiol 590:1943–1956. doi:10.1113/jphysiol.2011.224345, PMID: 22371472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gallego D, Hernandez P, Clave P, Jimenez M (2006) P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol 291:G584–G594, PMID: 16751171

    Article  CAS  PubMed  Google Scholar 

  19. Gao N, Hu HZ, Zhu MX, Fang X, Liu S, Gao C, Wood JD (2006) The P2Y purinergic receptor expressed by enteric neurones in guinea-pig intestine. Neurogastroenterol Motil 18:316–323, PMID: 16553587

    Article  CAS  PubMed  Google Scholar 

  20. Gil V, Gallego D, Grasa L, Martin MT, Jimenez M (2010) Purinergic and nitrergic neuromuscular transmission mediates spontaneous neuronal activity in the rat colon. Am J Physiol Gastrointest Liver Physiol 299:G158–G169. doi:10.1152/ajpgi.00448.2009, PMID: 20395536

    Article  CAS  PubMed  Google Scholar 

  21. Gil V, Gallego D, Moha Ou MH, Peyronnet R, Martinez-Cutillas M, Heurteaux C, Borsotto M, Jimenez M (2012) Relative contribution of SKCa and TREK1 channels in purinergic and nitrergic neuromuscular transmission in the rat colon. Am J Physiol Gastrointest Liver Physiol 303:G412–G423. doi:10.1152/ajpgi.00040.2012, PMID: 22636169

    Article  CAS  PubMed  Google Scholar 

  22. Gil V, Martinez-Cutillas M, Mane N, Martin MT, Jimenez M, Gallego D (2013) P2Y(1) knockout mice lack purinergic neuromuscular transmission in the antrum and cecum. Neurogastroenterol Motil 25:e170–e182. doi:10.1111/nmo.12060, PMID: 23323764

    Article  CAS  PubMed  Google Scholar 

  23. Gil V, Parsons S, Gallego D, Huizinga J, Jimenez M (2013) Effects of hydrogen sulphide on motility patterns in the rat colon. Br J Pharmacol 169:34–50. doi:10.1111/bph.12100, PMID: 23297830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Grasa L, Gil V, Gallego D, Martin MT, Jimenez M (2009) P2Y(1) receptors mediate inhibitory neuromuscular transmission in the rat colon. Br J Pharmacol 158:1641–1652. doi:10.1111/j.1476-5381.2009.00454.x, PMID: 19906120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Groneberg D, König P, Koesling D, Friebe A (2011) Nitric oxide sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 140(5):1608–1617. doi:10.1053/j.gastro.2011.01.038, PMID: 21277853

    Google Scholar 

  26. Hara Y, Kubota M, Szurszewski JH (1986) Electrophysiology of smooth muscle of the small intestine of some mammals. J Physiol 372:501–520, PMID: 3723415

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW, Mundell SJ (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105:3552–3560, PMID: 15665114

    Article  CAS  PubMed  Google Scholar 

  28. Harhun MI, Pucovsky V, Povstyan OV, Gordienko DV, Bolton TB (2005) Interstitial cells in the vasculature. J Cell Mol Med 9:232–243. doi:10.1111/j.1582-4934.2005.tb00352.x

    Article  CAS  PubMed  Google Scholar 

  29. He XD, Goyal RK (1993) Nitric oxide involvement in the peptide VIP-associated inhibitory junction potential in the guinea-pig ileum. J Physiol 461:485–499, PMID: 8102401

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Hu HZ, Gao N, Zhu MX, Liu S, Ren J, Gao C, Xia Y, Wood JD (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol 550:493–504, PMID: 12807993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S (2011) Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 5:93. doi:10.3389/fnins.2011.00093, PMID: 21833164

    Article  PubMed Central  PubMed  Google Scholar 

  32. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349, PMID: 7530333

    Article  CAS  PubMed  Google Scholar 

  33. Hwang SJ, Blair PJ, Durnin L, Mutafova-Yambolieva V, Sanders KM, Ward SM (2012) P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 590:1957–1972. doi:10.1113/jphysiol.2011.224634, PMID: 22371476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hwang SJ, Durnin L, Dwyer L, Rhee PL, Ward SM, Koh SD, Sanders KM, Mutafova-Yambolieva VN (2011) Beta-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology 140:608–617. doi:10.1053/j.gastro.2010.09.039, PMID: 20875415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jimenez M, Borderies JR, Vergara P, Wang Y, Daniel EE (1999) Slow waves in circular muscle of porcine ileum: structural and electrophysiological studies. Am J Physiol 276:G393–G406, PMID: 9950813

    CAS  PubMed  Google Scholar 

  36. Keef KD, Saxton SN, McDowall RA, Kaminski RE, Duffy AM, Cobine CA (2013) Functional role of vasoactive intestinal polypeptide in inhibitory motor innervation in the mouse internal anal sphincter. J Physiol 591:1489–1506. doi:10.1113/jphysiol.2012.247684, PMID: 23339175

    Article  PubMed Central  PubMed  Google Scholar 

  37. King BF (1994) Prejunctional autoinhibition of purinergic transmission in circular muscle of guinea-pig ileum; a mechanism distinct from P1-purinoceptor activation. J Auton Nerv Syst 48:55–63, PMID: 8027518

    Article  CAS  PubMed  Google Scholar 

  38. Kurahashi M, Zheng H, Dwyer L, Ward SM, Don Koh S, Sanders KM (2011) A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J Physiol 589(Pt 3):697–710. doi:10.1113/jphysiol.2010.201129, PMID: 21173079

    Google Scholar 

  39. Li M, Johnson CP, Adams MB, Sarna SK (2002) Cholinergic and nitrergic regulation of in vivo giant migrating contractions in rat colon. Am J Physiol Gastrointest Liver Physiol 283:G544–G552, PMID: 12181166

    CAS  PubMed  Google Scholar 

  40. Lies B, Groneberg D, Gambaryan S, Friebe A (2013) Lack of effect of ODQ does not exclude cGMP signalling via NO-sensitive guanylyl cyclase. Br J Pharmacol 170:317–327. doi:10.1111/bph.12275, PMID: 23763290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. MacMillan D, Kennedy C, McCarron JG (2012) ATP inhibits Ins(1,4,5)P3-evoked Ca2+ release in smooth muscle via P2Y1 receptors. J Cell Sci 125:5151–5158. doi:10.1242/jcs.108498, PMID: 22899721

    Article  CAS  PubMed  Google Scholar 

  42. Matsuyama H, El-Mahmoudy A, Shimizu Y, Takewaki T (2003) Nitrergic prejunctional inhibition of purinergic neuromuscular transmission in the hamster proximal colon. J Neurophysiol 89:2346–2353, PMID: 12740397

    Article  CAS  PubMed  Google Scholar 

  43. Michel K, Michaelis M, Mazzuoli G, Mueller K, Vanden Berghe P, Schemann M (2011) Fast calcium and voltage-sensitive dye imaging in enteric neurones reveal calcium peaks associated with single action potential discharge. J Physiol 589:5941–5947. doi:10.1113/jphysiol.2011.219550, PMID: 22041184

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, Ward SM, Sanders KM (2007) Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci U S A 104:16359–16364, PMID: 17913880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pluja L, Alberti E, Fernandez E, Mikkelsen HB, Thuneberg L, Jimenez M (2001) Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol 281:G255–G266, PMID: 11408279

    CAS  PubMed  Google Scholar 

  46. Pluja L, Fernandez E, Jimenez M (1999) Neural modulation of the cyclic electrical and mechanical activity in the rat colonic circular muscle: putative role of ATP and NO. Br J Pharmacol 126:883–892, PMID: 10193768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Popescu LM, Ciontea SM, Cretoiu D (2007) Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci 1101:139–165, PMID: 17360808

    Article  CAS  PubMed  Google Scholar 

  48. Reiner S, Ziegler N, Leon C, Lorenz K, von Hayn K, Gachet C, Lohse MJ, Hoffmann C (2009) Beta-Arrestin-2 interaction and internalization of the human P2Y1 receptor are dependent on C-terminal phosphorylation sites. Mol Pharmacol 76:1162–1171

    Article  CAS  PubMed  Google Scholar 

  49. Roberts JA, Durnin L, Sharkey KA, Mutafova-Yambolieva VN, Mawe GM (2013) Oxidative stress disrupts purinergic neuromuscular transmission in the inflamed colon. J Physiol 591:3725–3737. doi:10.1113/jphysiol.2013.254136, PMID: 23732648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Rodriguez-Rodriguez R, Yarova P, Winter P, Dora KA (2009) Desensitization of endothelial P2Y1 receptors by PKC-dependent mechanisms in pressurized rat small mesenteric arteries. Br J Pharmacol 158:1609–1620. doi:10.1111/j.1476-5381.2009.00456.x, PMID: 19845669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645. doi:10.1038/nrgastro.2012.168, PMID: 22965426

    Article  CAS  PubMed  Google Scholar 

  52. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA (2006) Interstitial cells of Cajal in the urethra. J Cell Mol Med 10:280–291. doi:10.1111/j.1582-4934.2006.tb00399.x

    Article  CAS  PubMed  Google Scholar 

  53. Sha L, Farrugia G, Harmsen WS, Szurszewski JH (2007) Membrane potential gradient is carbon monoxide-dependent in mouse and human small intestine. Am J Physiol Gastrointest Liver Physiol 293:G438–G445, PMID: 17510199

    Article  CAS  PubMed  Google Scholar 

  54. Sha L, Farrugia G, Linden DR, Szurszewski JH (2010) The transwall gradient across the mouse colonic circular muscle layer is carbon monoxide dependent. FASEB J 24:3840–3849. doi:10.1096/fj.10-156232, PMID: 20543114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Smith TK, Reed JB, Sanders KM (1988) Effects of membrane potential on electrical slow waves of canine proximal colon. Am J Physiol 255:C828–C834, PMID: 3202152

    CAS  PubMed  Google Scholar 

  56. Strong DS, Cornbrooks CF, Roberts JA, Hoffman JM, Sharkey KA, Mawe GM (2010) Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. J Physiol 588:847–859. doi:10.1113/jphysiol.2009.185082, PMID: 20064853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Suzuki N, Prosser CL, Dahms V (1986) Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine. Am J Physiol 250:G287–G294, PMID: 3953815

    CAS  PubMed  Google Scholar 

  58. Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130, PMID: 7090872

    Article  CAS  PubMed  Google Scholar 

  59. Tomita T (1978) The slow wave in the circular muscle of the guinea-pig stomach. Nihon Heikatsukin.Gakkai Zasshi; 14 Suppl:19 PMID: 723069

    Google Scholar 

  60. Vogalis F, Goyal RK (1997) Activation of small conductance Ca(2+)-dependent K + channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol 502(Pt 3):497–508, PMID: 9279803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480(Pt 1):91–97, PMID: 7853230

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ward SM (2001) Sanders KM. Interstitial cells of Cajal: primary targets of enteric motor innervation. Anat Rec 262(1):125–35. PMID: 11146435

    Google Scholar 

  63. Zizzo MG, Mule F, Serio R (2006) Mechanisms underlying hyperpolarization evoked by P2Y receptor activation in mouse distal colon. Eur J Pharmacol 544:174–180, PMID: 16843454

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Claudia Arenas, Antonio Acosta and Emma Martínez for their technical assistance.

Conflict of interest

This work has been funded by the following grant: BFU2009-11118 and 2011 CTP 00032. Noemí Mañé (AP2012-0897), Víctor Gil (AP2007-01583) and Míriam Martínez-Cutillas (AP2010-2224) are supported by the Ministerio de Ciencia e Innovación (Spain). Diana Gallego is supported by the Instituto de Salud Carlos III, Centro de Investigación Biomédica en red de enfermedades hepáticas y digestivas (CIBERehd). The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mañé, N., Gil, V., Martínez-Cutillas, M. et al. Dynamics of inhibitory co-transmission, membrane potential and pacemaker activity determine neuromyogenic function in the rat colon. Pflugers Arch - Eur J Physiol 466, 2305–2321 (2014). https://doi.org/10.1007/s00424-014-1500-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1500-8

Keywords

Navigation