Skip to main content
Log in

Mechanisms by which calcium receptor stimulation modifies electromechanical coupling in isolated ventricular cardiomyocytes

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The calcium-sensing receptor (CaR) is widely expressed throughout the entire cardiovascular system and is capable of activating signaling pathways in different cells. Alongside calcium, the CaR also responds to physiological polycations such as putrescine underlining a participation in physiological and pathophysiological processes. Here, we aimed to determine mechanisms as to how CaR activation affects the contractile responsiveness of ventricular cardiomyocytes under basal and stimulated conditions. For that purpose, cardiac myocytes from 3-month-old male Wistar rats were isolated, and the acute effects of an antagonist (NPS2390), agonists (putrescine and gadolinium), or of downregulation of the CaR by siRNA on cell shortening were recorded in a cell-edge-detection system. In addition, experiments were performed on muscle stripes and Langendorff preparations. Mechanistic insights were taken from calcium transients of beating fura-2 AM-loaded cardiomyocytes and western blots. Isolated ventricular cardiomyocytes constitutively express CaR. The expression in the atria is less pronounced. Acute inhibition of CaR reduced basal cell shortening of ventricular myocytes at nearly physiological levels of extracellular calcium. Inhibition of CaR strongly reduced contractility of ventricular muscle stripes but not of atria. Activation of CaR by putrescine and gadolinium influences the contractile responsiveness of isolated cardiomyocytes. Increased calcium mobilization from the sarcoplasmic reticulum via an IP3-dependent mechanism was responsible for amplified systolic calcium transients and a subsequent improvement in cell shortening. Alongside with these effects, activation of CaR increased relaxation velocity of the cells. In conclusion, ventricular CaR expression affects contractile parameters of ventricular heart muscle cells and modifies electromechanical coupling of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anwar A, Schluter KD, Heger J, Piper HM, Euler G (2008) Enhanced SERCA2a expression improves contractile performance of ventricular cardiomyocytes of rat under adrenergic stimulation. Pflugers Arch – Eur J Physiol 457:485–491

    Article  CAS  Google Scholar 

  2. Barrabés JA, Garcia-Dorado D, Agulló L, Rodríguez-Sinovas A, Padilla F, Trobo L, Soler-Soler J (2006) Intracoronary infusion of Gd3+ into ischemic region does not suppress phase Ib ventricular arrhythmias after coronary occlusion in swine. Am J Physiol Heart Circ Physiol 290:H2344–H2350

    Article  PubMed  Google Scholar 

  3. Bergeron RJ, Wiegand J, Weimar WR, Snyder PS (1998) Polyamine analogue antiarrhythmics. Pharmacol Res 38:367–380

    Article  CAS  PubMed  Google Scholar 

  4. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Herbert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366(6455):575–580

    Article  CAS  PubMed  Google Scholar 

  5. Canaff L, Petit JL, Kisiel M, Watson PH, Gascon-Barré M, Hendy GN (2001) Extracellular calcium-sensing receptor is expressed in rat hepatocytes: coupling to intracellular calcium mobilization and stimulation of bile flow. J Biol Chem 276:4070–4079

    Article  CAS  PubMed  Google Scholar 

  6. Colyer J (1998) Phosphorylation states of phospholamban. Ann N Y Acad Sci 853:79–91

    Article  CAS  PubMed  Google Scholar 

  7. Garrett JE, Tamir H, Kifor O, Simin RT, Rogers KV, Mithal A, Gagel RF, Brown EM (1995) Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 136:5202–5211

    CAS  PubMed  Google Scholar 

  8. Geibel J, Sritharan K, Geibel R, Geibel P, Persing JS, Seeger A, Roepke TK, Deichstetter M, Prinz C, Cheng SX, Martin D, Herbert SC (2006) Calcium-sensing receptor abrogates secretagogue- induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. Proc Natl Acad Sci U S A 103:9390–9397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Grohè C, van Eickels M, Wenzel S, Meyer R, Degenhardt H, Doevendans PA, Heinemann MP, Ross G, Schlüter K-D (2004) Sex-specific differences in ventricular expression and function of parathyroid hormone-related peptide. Cardiovasc Res 61:307–316

    Article  PubMed  Google Scholar 

  10. Harris P (1982) Polyamine metabolism in myocardial hypertrophy. Eur Heart J Suppl A 3:73–74

    Article  CAS  Google Scholar 

  11. Huang C, Handlogten ME, Miller RT (2002) Parallel activation of phosphatidylinositol 4-kinase and phospholipase C by the extracellular calcium-sensing receptor. J Biol Chem 277:20293–20300

    Article  CAS  PubMed  Google Scholar 

  12. Ladilov Y, Efe O, Schäfer C, Rother B, Kasseckert S, Abdallah Y, Meuter K, Schlüter K-D, Piper HM (2003) Reoxygenation-induced rigor-type contracture. J Mol Cell Cardiol 35:1481–1490

    Article  CAS  PubMed  Google Scholar 

  13. Langer M, Luttecke D, Schluter KD (2003) Mechanism of the positive contractile effect of nitric oxide on rat ventricular cardiomyocytes with positive force/frequency relationship. Pflugers Arch-Eur J Physiol 447:289–297

    Article  CAS  Google Scholar 

  14. McConkey DJ, Orrenius S (1997) The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun 239:357–366

    Article  CAS  PubMed  Google Scholar 

  15. Molostvov G, James S, Fletcher S, Bennett J, Lehnert H, Bland R, Zehnder D (2007) Extracellular calcium-sensing receptor is functionally expressed in human artery. Am J Physiol Ren Physiol 293:F946–F955

    Article  CAS  Google Scholar 

  16. Nemeth EF, Delmar EG, Heaton WL, Miller MA, Lambert LD, Conklin RL, Gowen M, Gleason JG, Bhatnagar PK, Fox J (2001) Calcilytic compounds: potent and selective Ca2+ receptor antagonists that stimulate secretion of parathyroid hormone. J Pharmacol Exp Ther 299:323–331

    CAS  PubMed  Google Scholar 

  17. Piper HM, Millar BC, McDermott BJ (1989) The negative inotropic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn-Schmiedeberg’s Arch Pharmacol 340:333–337

    CAS  Google Scholar 

  18. Purroy J, Spurr NK (2002) Molecular genetics of calcium sensing in bone cells. Hum Mol Genet 11:2377–2384

    Article  CAS  PubMed  Google Scholar 

  19. Quinn SJ, Ye CP, Diaz R, Kifor O, Bai M, Vassilev P, Brown E (1997) The Ca2+-sensing receptor: a target for polyamines. Am J Physiol 273:C1315–C1323

    CAS  PubMed  Google Scholar 

  20. Schlüter K-D, Piper HM (2005) Isolation and culture of adult ventricular cardiomyocytes. In: Dhein S et al (eds) Practical methods in cardiovascular research. Springer, Berlin-Heidelberg, pp 557–567

    Chapter  Google Scholar 

  21. Schlüter K, Katzer C, Frischkopf K, Wenzel S, Taimor G, Piper HM (2000) Expression, release, and biological activity of parathyroid hormone-related peptide from coronary endothelial cells. Circ Res 86:946–951

    Article  PubMed  Google Scholar 

  22. Smajilovic S, Tfelt-Hansen J (2008) Novel role of the calcium-sensing receptor in blood pressure modulation. Hypertension 52:994–1000

    Article  CAS  PubMed  Google Scholar 

  23. Tagliavini S, Genedani S, Bertolini A, Bazzani C (1991) Ischemia- and reperfusion-induced arrhythmias are prevented by putrescine. Eur J Pharmacol 194:7–10

    Article  CAS  PubMed  Google Scholar 

  24. Tfelt-Hansen J, Hansen JL, Smajilovic S, Terwilliger EF, Haunso S, Sheikh SP (2006) Calcium receptor is functionally expressed in rat neonatal ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol 290:H1165–H1171

    Article  CAS  PubMed  Google Scholar 

  25. Wang JW, Yazawa K, Hao LY, Onoue Y, Kameyama M (2007) Verrucotoxin inhibits KATP channels in cardiac myocytes through a muscarinic M3 receptor-PKC pathway. Eur J Pharmacol 563:172–179

    Article  CAS  PubMed  Google Scholar 

  26. Wang M, Yao Y, Kuang D, Hampson DR (2006) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem 281:8864–8870

    Article  CAS  PubMed  Google Scholar 

  27. Wang R, Xu C, Zhao W, Zhang J, Cao K, Yang B, Wu L (2003) Calcium and polyamine regulated calcium-sensing receptors in cardiac tissues. Eur J Biochem 270:2680–2688

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Bukoski RD (1998) Distribution of the perivascular nerve Ca2+ receptor in rat arteries. Br J Pharmacol 125:1397–1404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wang YG, Dedkova EN, Ji X, Blatter LA, Lipsius SL (2005) Phenylephrine acts via IP3-dependent intracellular NO release to stimulate L-type Ca2+ current in cat atrial myocytes. J Physiol 567(Pt 1):143–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ward DT, Riccardi D (2002) Renal physiology of the extracellular calcium-sensing receptor. Pflugers Arch 445:169–176

    Article  CAS  PubMed  Google Scholar 

  31. Weston AH, Absi M, Ward DT, Ohanian J, Dodd RH, Dauban P, Petrel C, Ruat M, Edwards G (2005) Evidence in favor of a calcium-sensing receptor in arterial endothelial cells: studies with calindol and Calhex 231. Circ Res 97:391–398

    Article  CAS  PubMed  Google Scholar 

  32. Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322:1178–1191

    Article  CAS  PubMed  Google Scholar 

  33. Zayzafoon M (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem 97:56–70

    Article  CAS  PubMed  Google Scholar 

  34. Zhang WH, Fu SB, Lu FH, Wu B, Gong DM, Pan ZW, Lv YJ, Zhao YJ, Li QF, Wang R, Yang BF, Xu CQ (2006) Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun 347:872–881

    Article  CAS  PubMed  Google Scholar 

  35. Zhao YJ, Xu CQ, Zhang WH, Zhang L, Bian SL, Huang Q, Sun HL, Li QF, Zhang YQ, Tian Y, Wang R, Yang BF, Li WM (2007) Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. Eur J Pharmacol 562:236–246

    Article  CAS  PubMed  Google Scholar 

  36. Zhao YJ, Zhang WH, Xu CQ, Li HZ, Wang LN, Li H, Sun YH, Lin Y, Han LP, Zhang L, Tian Y, Wang R, Yang BF, Li WM (2009) Involvement of the ornithine decarboxylase/polyamine system in precondition-induced cardioprotection through an interaction with PKC in rat hearts. Mol Cell Biochem 332:135–144

    Article  CAS  PubMed  Google Scholar 

  37. Ziegelstein RC, Xiong Y, He C, Hu Q (2006) Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells. Biochem Biophys Res Commun 342:153–163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Nadine Woitasky, Peter Volk, and Daniela Schreiber for excellent technical support. The data of this study are in part results of the thesis of Elena Dyukova.

Funding

This study was supported by the DAAD (cooperation program of the universities of Giessen, Germany and Kazan, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Schreckenberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PPTX 141 kb)

Supplementary Fig. 2

(PPTX 99 kb)

Supplementary Fig. 3

(PPTX 70 kb)

Supplementary Fig. 4

(PPTX 68 kb)

Supplementary Fig. 5

(PPTX 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreckenberg, R., Dyukova, E., Sitdikova, G. et al. Mechanisms by which calcium receptor stimulation modifies electromechanical coupling in isolated ventricular cardiomyocytes. Pflugers Arch - Eur J Physiol 467, 379–388 (2015). https://doi.org/10.1007/s00424-014-1498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1498-y

Keywords

Navigation