Skip to main content

Functional network analysis of obese and lean Göttingen minipigs elucidates changes in oxidative and inflammatory networks in obese pigs

Abstract

The Göttingen minipig model of obesity is used in pre-clinical research to predict clinical outcome of new treatments for metabolic diseases. However, treatment effects often remain unnoticed when using single parameter statistical comparisons due to the small numbers of animals giving rise to large variation and insufficient statistical power. The purpose of this study was to perform a correlation matrix analysis of multiple multi-scale parameters describing co-segregation of traits in order to identify differences between lean and obese minipigs. More than 40 parameters, ranging from physical, cardiovascular, inflammatory and metabolic markers were measured in lean and obese animals. Correlation matrix analysis was performed using permutation test and bootstrapping at different levels of significance. Single parameter comparisons yielded significant differences between lean and obese animals mainly for known physical traits. On the other hand, functional network analysis revealed new co-segregations, particularly in the domain of inflammatory and oxidative stress markers in the obese animals that were not present in the lean. Functional networks of lean or obese minipigs could be utilised to assess drug effects and predict changes in parameters with a certain degree of precision, on the basis of the networks confidence intervals. Comparison of functional networks in minipigs with those of human clinical data may be used to identify common parameters or co-segregations related to obesity between animal models and man.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bagi Z (2009) Mechanisms of coronary microvascular adaptation to obesity. Am J Physiol Regul Integr Comp Physiol 297(3):R556–R567. doi:10.1152/ajpregu.90817.2008

    CAS  PubMed  Article  Google Scholar 

  2. Christoffersen B, Golozoubova V, Pacini G, Svendsen O, Raun K (2013) The young Gottingen minipig as a model of childhood and adolescent obesity: influence of diet and gender. Obesity (Silver Spring) 21(1):149–158

    CAS  Article  Google Scholar 

  3. Christoffersen B, Ribel U, Raun K, Golozoubova V, Pacini G (2009) Evaluation of different methods for assessment of insulin sensitivity in Göttingen minipigs: introduction of a new, simpler method. Am J Physiol Regul Integr Comp Physiol 297(4):R1195–R1201

    CAS  PubMed  Article  Google Scholar 

  4. Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA (2009) Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat Rev Drug Discov 8(7):567–578. doi:10.1038/nrd2876

    CAS  PubMed  Article  Google Scholar 

  5. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770

    CAS  PubMed  Article  Google Scholar 

  6. Fulop T, Jebelovszki E, Erdei N, Szerafin T, Forster T, Edes I, Koller A, Bagi Z (2007) Adaptation of vasomotor function of human coronary arterioles to the simultaneous presence of obesity and hypertension. Arterioscler Thromb Vasc Biol 27(11):2348–2354. doi:10.1161/atvbaha.107.147991

    CAS  PubMed  Article  Google Scholar 

  7. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig 114(12):1752–1761. doi:10.1172/jci200421625

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y (2000) Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr 72(3):694–701

    CAS  PubMed  Google Scholar 

  9. Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23(2):270–299. doi:10.1017/S0954422410000168

    CAS  PubMed  Article  Google Scholar 

  10. Heegaard PM, Miller I, Sorensen NS, Soerensen KE, Skovgaard K (2013) Pig alpha1-acid glycoprotein: characterization and first description in any species as a negative acute phase protein. PLoS One 8(7):e68110. doi:10.1371/journal.pone.0068110

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. Heegaard PMH, Stockmarr A, Pi¤eiro M, Carpintero R, Lampreave F, Campbell FM, Eckersall PD, Toussaint MJM, Gruys E, Sorensen NS (2011) Optimal combinations of acute phase proteins for detecting infectious disease in pigs. Vet Res 42(1):50

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Johansen T, Hansen HS, Richelsen B, Malmlof R (2001) The obese Gottingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp Med 51(2):150–155

    CAS  PubMed  Google Scholar 

  13. Keaney JF, Larson MG, Vasan RS, Wilson PWF, Lipinska I, Corey D, Massaro JM, Sutherland P, Vita JA, Benjamin EJ (2003) Obesity and systemic oxidative stress: clinical correlates of oxidative stress in The Framingham Study. Arterioscler Thromb Vasc Biol 23(3):434–439. doi:10.1161/01.atv.0000058402.34138.11

    CAS  PubMed  Article  Google Scholar 

  14. Lykkesfeldt J (2007) Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress: analytical reproducibility and long-term stability of plasma samples subjected to acidic deproteinization. Cancer Epidemiol Biomarkers Prev 16(11):2513–2516

    CAS  PubMed  Article  Google Scholar 

  15. Moesgaard SG, Klostergaard C, Zois NE, Teerlink T, Molin M, Falk T, Rasmussen CE, Luis Fuentes V, Jones ID, Olsen LH (2012) Flow-mediated vasodilation measurements in Cavalier King Charles Spaniels with increasing severity of myxomatous mitral valve disease. J Vet Intern Med 26(1):61–68

    CAS  PubMed  Article  Google Scholar 

  16. Mortensen A, Lykkesfeldt J (2013) Kinetics of acid-induced degradation of tetra- and dihydrobiopterin in relation to their relevance as biomarkers of endothelial function. Biomarkers 18(1):55–62. doi:10.3109/1354750X.2012.730552

    CAS  PubMed  Article  Google Scholar 

  17. Nadeau J, Burrage LC, Restivo J, Pao Y-H, Churchill G, Hoit B (2003) Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res 13(9):2082–2091

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Peterson RG, Shaw WN, Neel MA, Little LA, Eichberg J (1990) Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR News 32:16–19

    Article  Google Scholar 

  19. Raun K, von Voss P, Knudsen LB (2007) Liraglutide, a once-daily human glucagon-like peptide-1 analog, minimizes food intake in severely obese minipigs. Obesity 15(7):1710–1716

    CAS  PubMed  Article  Google Scholar 

  20. Rødgaard T, Stagsted J, Christoffersen BO, Cirera S, Moesgaard SG, Sturek M, Alloosh M, Heegaard PM (2013) Orosomucoid expression profiles in liver, adipose tissues and serum of lean and obese domestic pigs, Gottingen minipigs and Ossabaw minipigs. Vet Immunol Immunopathol 151(3–4):325–330. doi:10.1016/j.vetimm.2012.11.002

    PubMed  Article  Google Scholar 

  21. Sheykhzade M, Nyborg NC (1998) Characterization of calcitonin gene-related peptide (CGRP) receptors in intramural coronary arteries from male and female Sprague Dawley rats. Br J Pharmacol 123(7):1464–1470

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116(7):1793–1801. doi:10.1172/JCI29069

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. van der Greef J, Martin S, Juhasz P, Adourian A, Plasterer T, Verheij ER, McBurney RN (2007) The art and practice of systems biology in medicine: mapping patterns of relationships. J Proteome Res 6(4):1540–1559. doi:10.1021/pr0606530

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The valuable technical assistance of Annie B. Kristensen, Joan Frandsen, Elisabeth Veyhe Andersen, Dennis Jensen, Christina Kjempf, Vibeke Christensen, Pia von Voss, Heidi Gertz Andersen and Charlott Kemp is gratefully acknowledged. The lean and obese Göttingen minipigs were funded by the SHARE Foundation and Danielsen’s Foundation and Novo Nordisk A/S, respectively. We acknowledge financial support by the Danish Heart Foundation (Project: R84-A3276-B1335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harrie C. M. Boonen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boonen, H.C.M., Moesgaard, S.G., Birck, M.M. et al. Functional network analysis of obese and lean Göttingen minipigs elucidates changes in oxidative and inflammatory networks in obese pigs. Pflugers Arch - Eur J Physiol 466, 2167–2176 (2014). https://doi.org/10.1007/s00424-014-1486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1486-2

Keywords

  • Functional network analysis
  • animal models
  • obesity
  • correlation matrix
  • Göttingen minipig