Proteomics in heart failure: top-down or bottom-up?

Abstract

The pathophysiology of heart failure (HF) is diverse, owing to multiple etiologies and aberrations in a number of cellular processes. Therefore, it is essential to understand how defects in the molecular pathways that mediate cellular responses to internal and external stressors function as a system to drive the HF phenotype. Mass spectrometry (MS)-based proteomics strategies have great potential for advancing our understanding of disease mechanisms at the systems level because proteins are the effector molecules for all cell functions and, thus, are directly responsible for determining cell phenotype. Two MS-based proteomics strategies exist: peptide-based bottom-up and protein-based top-down proteomics—each with its own unique strengths and weaknesses for interrogating the proteome. In this review, we will discuss the advantages and disadvantages of bottom-up and top-down MS for protein identification, quantification, and analysis of post-translational modifications, as well as highlight how both of these strategies have contributed to our understanding of the molecular and cellular mechanisms underlying HF. Additionally, the challenges associated with both proteomics approaches will be discussed and insights will be offered regarding the future of MS-based proteomics in HF research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

HF:

Heart failure

MS:

Mass spectrometry

PTMs:

Post-translational modifications

2DGE:

Two-dimensional gel electrophoresis

m/z :

Mass-to-charge ratio

MS/MS:

Tandem mass spectrometry

MALDI:

Matrix-assisted laser desorption/ionization

ESI:

Electrospray ionization

LC:

Liquid chromatography

CID:

Collision-induced dissociation

AP:

Affinity purification

ECD:

Electron capture dissociation

SNO:

S-nitrosylation

cTnI:

Cardiac troponin I

SHR:

Spontaneously hypertensive rat

WKY:

Wistar-Kyoto

iTRAQ:

Isotope tags for relative and absolute quantification

MI:

Myocardial infarction

SILAC:

Stable isotope labeling by amino acids in cell culture

TAC:

Transverse aortic constriction

MW:

Molecular weight

MDLC:

Multi-dimensional liquid chromatography

cMyBP-C:

Cardiac myosin binding protein-C

TOF:

Time-of-flight

Q-TOF:

Quadrupole-time-of-flight

HCD:

High-energy collision dissociation

IRMPD:

Infrared multiphoton dissociation

UVPD:

Ultraviolet photodissociation

PSD:

Post-source decay

ETD:

Electron transfer dissociation

GELFrEE:

Gel-eluted liquid fraction entrapment electrophoresis

IMAC:

Immobilized-metal affinity chromatography

TMT:

Tandem mass tag

FTMS:

Fourier-transform mass spectrometry

iCAT:

Isotope-coded affinity tag

HDAC:

Histone deacetylase

Tm:

Tropomyosin

XIC:

Extracted ion chromatogram

References

  1. 1.

    Addona TA, Shi X, Keshishian H, Mani DR, Burgess M, Gillette MA, Clauser KR, Shen D, Lewis GD, Farrell LA, Fifer MA, Sabatine MS, Gerszten RE, Carr SA (2011) A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol 29:635–643

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. 2.

    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y, Chakir K, Samantapudi D, Paolocci N, Tomaselli GF, Kass DA, Van Eyk JE (2010) Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ Cardiovasc Genet 3:78–87

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Ansong C, Wu S, Meng D, Liu X, Brewer HM, Deatherage Kaiser BL, Nakayasu ES, Cort JR, Pevzner P, Smith RD, Heffron F, Adkins JN, Pasa-Tolic L (2013) Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions. Proc Natl Acad Sci U S A 110:10153–10158

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. 5.

    Ayaz-Guner S, Zhang J, Li L, Walker JW, Ge Y (2009) In vivo phosphorylation site mapping in mouse cardiac troponin I by high resolution top-down electron capture dissociation mass spectrometry: Ser22/23 are the only sites basally phosphorylated. Biochemistry 48:8161–8170

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Bousette N, Chugh S, Fong V, Isserlin R, Kim KH, Volchuk A, Backx PH, Liu P, Kislinger T, MacLennan DH, Emili A, Gramolini AO (2010) Constitutively active calcineurin induces cardiac endoplasmic reticulum stress and protects against apoptosis that is mediated by alpha-crystallin-B. Proc Natl Acad Sci U S A 107:18481–18486

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. 8.

    Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30–41

    PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL (2013) Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol Cell Proteomics 12:3465–3473

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE (2013) Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res 112:382–392

    PubMed  Article  Google Scholar 

  12. 12.

    Dewey FE, Wheeler MT, Ashley EA (2011) Systems biology of heart failure, challenges and hopes. Curr Opin Cardiol 26:314–321

    PubMed  Article  Google Scholar 

  13. 13.

    Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2:262–271

    PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Dong X, Sumandea CA, Chen YC, Garcia-Cazarin ML, Zhang J, Balke CW, Sumandea MP, Ge Y (2012) Augmented phosphorylation of cardiac troponin I in hypertensive heart failure. J Biol Chem 287:848–857

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. 15.

    Drake TA, Ping P (2007) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Proteomics approaches to the systems biology of cardiovascular diseases. J Lipid Res 48:1–8

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Duan X, Young R, Straubinger RM, Page B, Cao J, Wang H, Yu H, Canty JM, Qu J (2009) A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J Proteome Res 8:2838–2850

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Fields S (2001) Proteomics. Proteomics in genomeland. Science 291:1221–1224

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Ge Y, Rybakova IN, Xu Q, Moss RL (2009) Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. Proc Natl Acad Sci U S A 106:12658–12663

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Huang RY, Laing JG, Kanter EM, Berthoud VM, Bao M, Rohrs HW, Townsend RR, Yamada KA (2011) Identification of CaMKII phosphorylation sites in Connexin43 by high-resolution mass spectrometry. J Proteome Res 10:1098–1109

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018

    PubMed  Article  Google Scholar 

  23. 23.

    Jia W, Shaffer JF, Harris SP, Leary JA (2010) Identification of novel protein kinase A phosphorylation sites in the M-domain of human and murine cardiac myosin binding protein-C using mass spectrometry analysis. J Proteome Res 9:1843–1853

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Kohr MJ, Aponte A, Sun J, Gucek M, Steenbergen C, Murphy E (2012) Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication. Circ Res 111:1308–1312

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M (2013) Proteomics: from single molecules to biological pathways. Cardiovasc Res 97:612–622

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Little DP, Speir JP, Senko MW, O’Connor PB, McLafferty FW (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66:2809–2815

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 105:18132–18138

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. 30.

    Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Annu Rev Anal Chem 1:579–599

    Google Scholar 

  31. 31.

    Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, Ladroue C, Madhu B, Roberts N, De Souza A, Fredericks S, Stubbs M, Griffiths JR, Jahangiri M, Xu Q, Camm AJ (2008) Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am Coll Cardiol 51:585–594

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    McMurray JJ, Pfeffer MA (2005) Heart failure. Lancet 365:1877–1889

    PubMed  Article  Google Scholar 

  33. 33.

    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science. 246:64–71

    Google Scholar 

  34. 34.

    Monte E, Mouillesseaux K, Chen H, Kimball T, Ren S, Wang Y, Chen JN, Vondriska TM, Franklin S (2013) Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. Am J Physiol Heart Circ Physiol 305:H1624–H1638

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Murray CI, Kane LA, Uhrigshardt H, Wang SB, Van Eyk JE (2011) Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol Cell Proteomics 10(M110):004721

    PubMed  Google Scholar 

  37. 37.

    Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Peng Y, Chen X, Zhang H, Xu Q, Hacker TA, Ge Y (2013) Top-down targeted proteomics for deep sequencing of tropomyosin isoforms. J Proteome Res 12:187–198

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Peng Y, Yu D, Gregorich Z, Chen X, Beyer AM, Gutterman DD, Ge Y (2013) In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. J Muscle Res Cell Motil 34:199–210

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Ping P (2003) Identification of novel signaling complexes by functional proteomics. Circ Res 93:595–603

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Ping P, Zhang J, Pierce WM Jr, Bolli R (2001) Functional proteomic analysis of protein kinase C epsilon signaling complexes in the normal heart and during cardioprotection. Circ Res 88:59–62

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Sancho Solis R, Ge Y, Walker JW (2008) Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry. J Muscle Res Cell Motil 29:203–212

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Senko MW, Speir JP, McLafferty FW (1994) Collisional activation of large multiply charged ions using Fourier transform mass spectrometry. Anal Chem 66:2801–2808

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Shaw JB, Li W, Holden DD, Zhang Y, Griep-Raming J, Fellers RT, Early BP, Thomas PM, Kelleher NL, Brodbelt JS (2013) Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. J Am Chem Soc 135:12646–12651

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. 48.

    Smith LM, Kelleher NL, Consortium for Top Down P (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186–187

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Solaro RJ, van der Velden J (2010) Why does troponin I have so many phosphorylation sites? Fact and fancy. J Mol Cell Cardiol 48:810–816

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. 50.

    Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. 52.

    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    CAS  Article  Google Scholar 

  53. 53.

    Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR, Tipton JD, Vellaichamy A, Kellie JF, Li M, Wu C, Sweet SM, Early BP, Siuti N, LeDuc RD, Compton PD, Thomas PM, Kelleher NL (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480:254–258

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  54. 54.

    Tu C, Li J, Young R, Page BJ, Engler F, Halfon MS, Canty JM Jr, Qu J (2011) Combinatorial peptide ligand library treatment followed by a dual-enzyme, dual-activation approach on a nanoflow liquid chromatography/orbitrap/electron transfer dissociation system for comprehensive analysis of swine plasma proteome. Anal Chem 83:4802–4813

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  55. 55.

    Wang D, Fang C, Zong NC, Liem DA, Cadeiras M, Scruggs SB, Yu H, Kim AK, Yang P, Deng M, Lu H, Ping P (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 12:3793–3802

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Warren CM, Geenen DL, Helseth DL Jr, Xu H, Solaro RJ (2010) Sub-proteomic fractionation, iTRAQ, and OFFGEL-LC-MS/MS approaches to cardiac proteomics. J Proteomics 73:1551–1561

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  57. 57.

    Xu F, Xu Q, Dong X, Guy M, Guner H, Hacker TA, Ge Y (2011) Top-down high-resolution electron capture dissociation mass spectrometry for comprehensive characterization of post-translational modifications in Rhesus monkey cardiac troponin I. Int J Mass Spectrom 305:95–102

    CAS  Article  Google Scholar 

  58. 58.

    Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Zabrouskov V, Ge Y, Schwartz J, Walker JW (2008) Unraveling molecular complexity of phosphorylated human cardiac troponin I by top down electron capture dissociation/electron transfer dissociation mass spectrometry. Mol Cell Proteomics 7:1838–1849

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Zhang H, Ge Y (2011) Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ Cardiovasc Genet 4:711

    PubMed Central  PubMed  Article  Google Scholar 

  61. 61.

    Zhang J, Dong X, Hacker TA, Ge Y (2010) Deciphering modifications in swine cardiac troponin I by top-down high-resolution tandem mass spectrometry. J Am Soc Mass Spectrom 21:940–948

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. 62.

    Zhang J, Guy MJ, Norman HS, Chen YC, Xu Q, Dong X, Guner H, Wang S, Kohmoto T, Young KH, Moss RL, Ge Y (2011) Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res 10:4054–4065

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. 63.

    Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support by the National Institute of Health R01HL096971 and R01HL109810 (to YG). ZG would like to thank the National Institute of Health training grant T32GM008688.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Ge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gregorich, Z.R., Chang, YH. & Ge, Y. Proteomics in heart failure: top-down or bottom-up?. Pflugers Arch - Eur J Physiol 466, 1199–1209 (2014). https://doi.org/10.1007/s00424-014-1471-9

Download citation

Keywords

  • Heart failure
  • Proteomics
  • Mass spectrometry
  • Post-translational modifications
  • Systems biology