Abstract
The pathophysiology of heart failure (HF) is diverse, owing to multiple etiologies and aberrations in a number of cellular processes. Therefore, it is essential to understand how defects in the molecular pathways that mediate cellular responses to internal and external stressors function as a system to drive the HF phenotype. Mass spectrometry (MS)-based proteomics strategies have great potential for advancing our understanding of disease mechanisms at the systems level because proteins are the effector molecules for all cell functions and, thus, are directly responsible for determining cell phenotype. Two MS-based proteomics strategies exist: peptide-based bottom-up and protein-based top-down proteomics—each with its own unique strengths and weaknesses for interrogating the proteome. In this review, we will discuss the advantages and disadvantages of bottom-up and top-down MS for protein identification, quantification, and analysis of post-translational modifications, as well as highlight how both of these strategies have contributed to our understanding of the molecular and cellular mechanisms underlying HF. Additionally, the challenges associated with both proteomics approaches will be discussed and insights will be offered regarding the future of MS-based proteomics in HF research.
This is a preview of subscription content, access via your institution.


Abbreviations
- HF:
-
Heart failure
- MS:
-
Mass spectrometry
- PTMs:
-
Post-translational modifications
- 2DGE:
-
Two-dimensional gel electrophoresis
- m/z :
-
Mass-to-charge ratio
- MS/MS:
-
Tandem mass spectrometry
- MALDI:
-
Matrix-assisted laser desorption/ionization
- ESI:
-
Electrospray ionization
- LC:
-
Liquid chromatography
- CID:
-
Collision-induced dissociation
- AP:
-
Affinity purification
- ECD:
-
Electron capture dissociation
- SNO:
-
S-nitrosylation
- cTnI:
-
Cardiac troponin I
- SHR:
-
Spontaneously hypertensive rat
- WKY:
-
Wistar-Kyoto
- iTRAQ:
-
Isotope tags for relative and absolute quantification
- MI:
-
Myocardial infarction
- SILAC:
-
Stable isotope labeling by amino acids in cell culture
- TAC:
-
Transverse aortic constriction
- MW:
-
Molecular weight
- MDLC:
-
Multi-dimensional liquid chromatography
- cMyBP-C:
-
Cardiac myosin binding protein-C
- TOF:
-
Time-of-flight
- Q-TOF:
-
Quadrupole-time-of-flight
- HCD:
-
High-energy collision dissociation
- IRMPD:
-
Infrared multiphoton dissociation
- UVPD:
-
Ultraviolet photodissociation
- PSD:
-
Post-source decay
- ETD:
-
Electron transfer dissociation
- GELFrEE:
-
Gel-eluted liquid fraction entrapment electrophoresis
- IMAC:
-
Immobilized-metal affinity chromatography
- TMT:
-
Tandem mass tag
- FTMS:
-
Fourier-transform mass spectrometry
- iCAT:
-
Isotope-coded affinity tag
- HDAC:
-
Histone deacetylase
- Tm:
-
Tropomyosin
- XIC:
-
Extracted ion chromatogram
References
- 1.
Addona TA, Shi X, Keshishian H, Mani DR, Burgess M, Gillette MA, Clauser KR, Shen D, Lewis GD, Farrell LA, Fifer MA, Sabatine MS, Gerszten RE, Carr SA (2011) A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol 29:635–643
- 2.
Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207
- 3.
Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y, Chakir K, Samantapudi D, Paolocci N, Tomaselli GF, Kass DA, Van Eyk JE (2010) Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ Cardiovasc Genet 3:78–87
- 4.
Ansong C, Wu S, Meng D, Liu X, Brewer HM, Deatherage Kaiser BL, Nakayasu ES, Cort JR, Pevzner P, Smith RD, Heffron F, Adkins JN, Pasa-Tolic L (2013) Top-down proteomics reveals a unique protein S-thiolation switch in Salmonella Typhimurium in response to infection-like conditions. Proc Natl Acad Sci U S A 110:10153–10158
- 5.
Ayaz-Guner S, Zhang J, Li L, Walker JW, Ge Y (2009) In vivo phosphorylation site mapping in mouse cardiac troponin I by high resolution top-down electron capture dissociation mass spectrometry: Ser22/23 are the only sites basally phosphorylated. Biochemistry 48:8161–8170
- 6.
Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031
- 7.
Bousette N, Chugh S, Fong V, Isserlin R, Kim KH, Volchuk A, Backx PH, Liu P, Kislinger T, MacLennan DH, Emili A, Gramolini AO (2010) Constitutively active calcineurin induces cardiac endoplasmic reticulum stress and protects against apoptosis that is mediated by alpha-crystallin-B. Proc Natl Acad Sci U S A 107:18481–18486
- 8.
Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8:30–41
- 9.
Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL (2013) Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol Cell Proteomics 12:3465–3473
- 10.
Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11:427–439
- 11.
Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE (2013) Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res 112:382–392
- 12.
Dewey FE, Wheeler MT, Ashley EA (2011) Systems biology of heart failure, challenges and hopes. Curr Opin Cardiol 26:314–321
- 13.
Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2:262–271
- 14.
Dong X, Sumandea CA, Chen YC, Garcia-Cazarin ML, Zhang J, Balke CW, Sumandea MP, Ge Y (2012) Augmented phosphorylation of cardiac troponin I in hypertensive heart failure. J Biol Chem 287:848–857
- 15.
Drake TA, Ping P (2007) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Proteomics approaches to the systems biology of cardiovascular diseases. J Lipid Res 48:1–8
- 16.
Duan X, Young R, Straubinger RM, Page B, Cao J, Wang H, Yu H, Canty JM, Qu J (2009) A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J Proteome Res 8:2838–2850
- 17.
Fields S (2001) Proteomics. Proteomics in genomeland. Science 291:1221–1224
- 18.
Ge Y, Rybakova IN, Xu Q, Moss RL (2009) Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. Proc Natl Acad Sci U S A 106:12658–12663
- 19.
Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654
- 20.
Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490
- 21.
Huang RY, Laing JG, Kanter EM, Berthoud VM, Bao M, Rohrs HW, Townsend RR, Yamada KA (2011) Identification of CaMKII phosphorylation sites in Connexin43 by high-resolution mass spectrometry. J Proteome Res 10:1098–1109
- 22.
Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018
- 23.
Jia W, Shaffer JF, Harris SP, Leary JA (2010) Identification of novel protein kinase A phosphorylation sites in the M-domain of human and murine cardiac myosin binding protein-C using mass spectrometry analysis. J Proteome Res 9:1843–1853
- 24.
Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664
- 25.
Kohr MJ, Aponte A, Sun J, Gucek M, Steenbergen C, Murphy E (2012) Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication. Circ Res 111:1308–1312
- 26.
Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M (2013) Proteomics: from single molecules to biological pathways. Cardiovasc Res 97:612–622
- 27.
Little DP, Speir JP, Senko MW, O’Connor PB, McLafferty FW (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66:2809–2815
- 28.
Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261
- 29.
Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 105:18132–18138
- 30.
Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Annu Rev Anal Chem 1:579–599
- 31.
Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, Ladroue C, Madhu B, Roberts N, De Souza A, Fredericks S, Stubbs M, Griffiths JR, Jahangiri M, Xu Q, Camm AJ (2008) Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am Coll Cardiol 51:585–594
- 32.
McMurray JJ, Pfeffer MA (2005) Heart failure. Lancet 365:1877–1889
- 33.
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science. 246:64–71
- 34.
Monte E, Mouillesseaux K, Chen H, Kimball T, Ren S, Wang Y, Chen JN, Vondriska TM, Franklin S (2013) Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. Am J Physiol Heart Circ Physiol 305:H1624–H1638
- 35.
Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928
- 36.
Murray CI, Kane LA, Uhrigshardt H, Wang SB, Van Eyk JE (2011) Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection. Mol Cell Proteomics 10(M110):004721
- 37.
Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712
- 38.
Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262
- 39.
Peng Y, Chen X, Zhang H, Xu Q, Hacker TA, Ge Y (2013) Top-down targeted proteomics for deep sequencing of tropomyosin isoforms. J Proteome Res 12:187–198
- 40.
Peng Y, Yu D, Gregorich Z, Chen X, Beyer AM, Gutterman DD, Ge Y (2013) In-depth proteomic analysis of human tropomyosin by top-down mass spectrometry. J Muscle Res Cell Motil 34:199–210
- 41.
Ping P (2003) Identification of novel signaling complexes by functional proteomics. Circ Res 93:595–603
- 42.
Ping P, Zhang J, Pierce WM Jr, Bolli R (2001) Functional proteomic analysis of protein kinase C epsilon signaling complexes in the normal heart and during cardioprotection. Circ Res 88:59–62
- 43.
Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077
- 44.
Sancho Solis R, Ge Y, Walker JW (2008) Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry. J Muscle Res Cell Motil 29:203–212
- 45.
Senko MW, Speir JP, McLafferty FW (1994) Collisional activation of large multiply charged ions using Fourier transform mass spectrometry. Anal Chem 66:2801–2808
- 46.
Shaw JB, Li W, Holden DD, Zhang Y, Griep-Raming J, Fellers RT, Early BP, Thomas PM, Kelleher NL, Brodbelt JS (2013) Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. J Am Chem Soc 135:12646–12651
- 47.
Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4:817–821
- 48.
Smith LM, Kelleher NL, Consortium for Top Down P (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186–187
- 49.
Solaro RJ, van der Velden J (2010) Why does troponin I have so many phosphorylation sites? Fact and fancy. J Mol Cell Cardiol 48:810–816
- 50.
Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711
- 51.
Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533
- 52.
Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153
- 53.
Tran JC, Zamdborg L, Ahlf DR, Lee JE, Catherman AD, Durbin KR, Tipton JD, Vellaichamy A, Kellie JF, Li M, Wu C, Sweet SM, Early BP, Siuti N, LeDuc RD, Compton PD, Thomas PM, Kelleher NL (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480:254–258
- 54.
Tu C, Li J, Young R, Page BJ, Engler F, Halfon MS, Canty JM Jr, Qu J (2011) Combinatorial peptide ligand library treatment followed by a dual-enzyme, dual-activation approach on a nanoflow liquid chromatography/orbitrap/electron transfer dissociation system for comprehensive analysis of swine plasma proteome. Anal Chem 83:4802–4813
- 55.
Wang D, Fang C, Zong NC, Liem DA, Cadeiras M, Scruggs SB, Yu H, Kim AK, Yang P, Deng M, Lu H, Ping P (2013) Regulation of acetylation restores proteolytic function of diseased myocardium in mouse and human. Mol Cell Proteomics 12:3793–3802
- 56.
Warren CM, Geenen DL, Helseth DL Jr, Xu H, Solaro RJ (2010) Sub-proteomic fractionation, iTRAQ, and OFFGEL-LC-MS/MS approaches to cardiac proteomics. J Proteomics 73:1551–1561
- 57.
Xu F, Xu Q, Dong X, Guy M, Guner H, Hacker TA, Ge Y (2011) Top-down high-resolution electron capture dissociation mass spectrometry for comprehensive characterization of post-translational modifications in Rhesus monkey cardiac troponin I. Int J Mass Spectrom 305:95–102
- 58.
Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79
- 59.
Zabrouskov V, Ge Y, Schwartz J, Walker JW (2008) Unraveling molecular complexity of phosphorylated human cardiac troponin I by top down electron capture dissociation/electron transfer dissociation mass spectrometry. Mol Cell Proteomics 7:1838–1849
- 60.
Zhang H, Ge Y (2011) Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ Cardiovasc Genet 4:711
- 61.
Zhang J, Dong X, Hacker TA, Ge Y (2010) Deciphering modifications in swine cardiac troponin I by top-down high-resolution tandem mass spectrometry. J Am Soc Mass Spectrom 21:940–948
- 62.
Zhang J, Guy MJ, Norman HS, Chen YC, Xu Q, Dong X, Guner H, Wang S, Kohmoto T, Young KH, Moss RL, Ge Y (2011) Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteome Res 10:4054–4065
- 63.
Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573
Acknowledgments
We would like to acknowledge the financial support by the National Institute of Health R01HL096971 and R01HL109810 (to YG). ZG would like to thank the National Institute of Health training grant T32GM008688.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gregorich, Z.R., Chang, YH. & Ge, Y. Proteomics in heart failure: top-down or bottom-up?. Pflugers Arch - Eur J Physiol 466, 1199–1209 (2014). https://doi.org/10.1007/s00424-014-1471-9
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Heart failure
- Proteomics
- Mass spectrometry
- Post-translational modifications
- Systems biology