Skip to main content
Log in

The T-type calcium channel as a new therapeutic target for Parkinson’s disease

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most prevalent movement disorder caused by degeneration of the dopaminergic neurons in substantia nigra pars compacta. Deep brain stimulation (DBS) at the subthalamic nucleus (STN) has been a new and effective treatment of PD. It is interesting how a neurological disorder caused by the deficiency of a specific chemical substance (i.e., dopamine) from one site could be so successfully treated by a pure physical maneuver (i.e., DBS) at another site. STN neurons could discharge in the single-spike or the burst modes. A significant increase in STN burst discharges has been unequivocally observed in dopamine-deprived conditions such as PD, and was recently shown to have a direct causal relation with parkinsonian symptoms. The occurrence of burst discharges in STN requires enough available T-type Ca2+ currents, which could bring the relatively negative membrane potential to the threshold of firing Na+ spikes. DBS, by injection of negative currents into the extracellular space, most likely would depolarize the STN neuron and then inactivate the T-type Ca2+ channel. Burst discharges are thus decreased and parkinsonian locomotor deficits ameliorated. Conversely, injection of positive currents into STN itself could induce parkinsonian locomotor deficits in animals without dopaminergic lesions. Local application of T-type Ca2+ channel blockers into STN would also dramatically decrease the burst discharges and improve parkinsonian locomotor symptoms. Notably, zonisamide, which could inhibit T-type Ca2+ currents in STN, has been shown to benefit PD patients in a clinical trial. From the pathophysiological perspectives, PD can be viewed as a prototypical disorder of “brain arrhythmias”. Modulation of relevant ion channels by physical or chemical maneuvers may be important therapeutic considerations for PD and other diseases related to deranged neural rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez L, Macias R, Pavón N, López G, Rodríguez-Oroz MC, Rodríguez R, Alvarez M, Pedroso I, Teijeiro J, Fernández R, Casabona E, Salazar S, Maragoto C, Carballo M, García I, Guridi J, Juncos JL, DeLong MR, Obeso JA (2009) Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80:979–985

    Article  CAS  PubMed  Google Scholar 

  4. Amtage F, Henschel K, Schelter B, Vesper J, Timmer J, Lucking CH, Hellwig B (2008) Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients. Neurosci Lett 442:195–199

    Google Scholar 

  5. Bal T, von Krosigk M, McCormick DA (1995) Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. J Physiol 483:641–663

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8(1):67–81

    Article  PubMed  Google Scholar 

  7. Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, Laurent A, Gentil M, Perret J (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62(1–4):76–84

    Article  CAS  PubMed  Google Scholar 

  8. Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(Suppl 3):S145–S149

    Google Scholar 

  9. Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72(2):507–520

    CAS  PubMed  Google Scholar 

  10. Beurrier C, Bioulac B, Hammond C (2000) Slowly inactivating sodium current (I(NaP)) underlies single spike activity in rat subthalamic neurons. J Neurophysiol 83(4):1951–1957

    CAS  PubMed  Google Scholar 

  11. Beurrier C, Congar P, Bioulac B, Hammond C (1999) Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 19(2):599–609

    CAS  PubMed  Google Scholar 

  12. Bevan MD, Wilson CJ (1999) Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. J Neurosci 19(17):7617–7628

    CAS  PubMed  Google Scholar 

  13. Cain SM, Snutch TP (2013) T-type calcium channels in burst-firing, network synchrony, and epilepsy. Biochim Biophys Acta 1828:1572–1578

    Article  CAS  PubMed  Google Scholar 

  14. Cragg S, Baufreton J, Xue Y, Bolam J, Bevan MD (2004) Synaptic release of dopamine in the subthalamic nucleus. Eur J Neurosci 20(7):1788–1802

    Google Scholar 

  15. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  16. DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  17. Do MT, Bean BP (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39(1):109–120

    Article  CAS  PubMed  Google Scholar 

  18. Elble RJ (1996) Central mechanisms of tremor. J Clin Neurophysiol 13:133–144

    Article  CAS  PubMed  Google Scholar 

  19. Elble RJ (2000) Origins of tremor. Lancet 355:1113–1114

    Article  CAS  PubMed  Google Scholar 

  20. Enomoto A, Han JM, Hsiao CF, Wu N, Chandler SH (2006) Participation of sodium currents in burst generation and control of membrane excitability in mesencephalic trigeminal neurons. J Neurosci 26(13):3412–3422

    Article  CAS  PubMed  Google Scholar 

  21. Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    CAS  PubMed  Google Scholar 

  22. Francois C, Savy C, Jan C, Tande D, Hirsch EC, Yelnik J (2000) Dopaminergic innervations of the subthalamic nucleus in the normal state, in MPTP treated monkeys, and in Parkinson’s disease patients. J Comp Neurol 425:121–129

    Google Scholar 

  23. Georgopoulos AP, DeLong MR, Crutcher MD (1983) Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 3(8):1586–1598

    CAS  PubMed  Google Scholar 

  24. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  25. Govindaiah G, Cox CL (2005) Excitatory actions of dopamine via D1-like receptors in the rat lateral geniculate nucleus. J Neurophysiol 94:3708–3718

    Google Scholar 

  26. Guridi J, Herrero MT, Luquin MR, Guillen J, Ruberg M, Laguna J, Vila M, Javoy-Agid F, Agid Y, Hirsch E, Obeso JA (1996) Subthalamotomy in parkinsonian monkeys. Behavioural and biochemical analysis. Brain 119(5):1717–1727

    Google Scholar 

  27. Hamani C, Neimat JS, Lozano AM (2007) Deep brain stimulation and chemical neuromodulation: current use and perspectives for the future. Acta Neurochir 97(2):127–133

    Article  CAS  Google Scholar 

  28. Hassani OK, Féger J (1999) Effects of intrasubthalamic injection of dopamine receptor agonists on subthalamic neurons in normal and 6-hydroxydopamine-lesioned rats: an electrophysiological and c-Fos study. Neuroscience 92(2):533–543

    Article  CAS  PubMed  Google Scholar 

  29. Hellwig B, Haussler S, Lauk M, Guschlbauer B, Koster B, Kristeva-Feige R, Timmer J, Lücking CH (2000) Tremor-correlated cortical activity detected by electroencephalography. Clin Neurophysiol 111:806–809

    Google Scholar 

  30. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  PubMed  Google Scholar 

  31. Holder JL Jr, Wilfong AA (2011) Zonisamide in the treatment of epilepsy. Expert Opin Pharmacother 12(16):2573–2581

    Google Scholar 

  32. Hollerman JR, Grace AA (1992) Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Res 590:291–299

    Article  CAS  PubMed  Google Scholar 

  33. Hurtado JM, Gray CM, Tamas LB, Sigvardt KA (1999) Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci U S A 96:1674–1679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628

    Google Scholar 

  35. Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kito M, Maehara M, Watanabe K (1996) Mechanisms of T-type calcium channel blockade by zonisamide. Seizure 5:115–119

    Article  CAS  PubMed  Google Scholar 

  38. Krack P, Limousin P, Benabid AL, Pollak P (1997) Chronic stimulation of subthalamic nucleus improves levodopa-induced dyskinesias in Parkinson’s disease. Lancet 350:1676

    Article  CAS  PubMed  Google Scholar 

  39. Kreiss DS, Mastropietro CW, Rawji SS, Walters JR (1997) The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease. J Neurosci 17(17):6807–6819

    CAS  PubMed  Google Scholar 

  40. Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117(3):531–543

    Article  PubMed  Google Scholar 

  41. Leppik IE (1999) Zonisamide. Epilepsia 40(Suppl 5):S23–S29

    Article  CAS  PubMed  Google Scholar 

  42. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111

    Google Scholar 

  43. Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408

    Google Scholar 

  44. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Broussolle E, Perret JE, Benabid AL (1995) Bilateral subthalamic nucleus stimulation for severe Parkinson’s disease. Mov Disord 10(5):672–674

    Google Scholar 

  45. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345(8942):91–95

    Article  CAS  PubMed  Google Scholar 

  46. Llinas R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Mallet N, Ballion B, Le Moine C, Gonon F (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26(14):3875–3884

    Article  CAS  PubMed  Google Scholar 

  48. Marchand R (1987) Histogenesis of the subthalamic nucleus. Neuroscience 21:183–195

    Article  CAS  PubMed  Google Scholar 

  49. Matar N, Jin W, Wrubel H, Hescheler J, Schneider T, Weiergräber M (2009) Zonisamide block of cloned human T-type voltage-gated calcium channels. Epilepsy Res 83:224–234

    Article  CAS  PubMed  Google Scholar 

  50. McCormick DA, Bal T (1994) Sensory gating mechanisms of the thalamus. Curr Opin Neurobiol 4:550–556

    Article  CAS  PubMed  Google Scholar 

  51. McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    Article  CAS  PubMed  Google Scholar 

  52. Mimaki T (1998) Clinical pharmacology and therapeutic drug monitoring of zonisamide. Ther Drug Monit 20:593–597

    Article  CAS  PubMed  Google Scholar 

  53. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  54. Mink JW (2003) The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 60(10):1365–1368

    Article  PubMed  Google Scholar 

  55. Miwa H (2007) Zonisamide for the treatment of Parkinson’s disease. Expert Rev Neurother 7(9):1077–1083

    Article  CAS  PubMed  Google Scholar 

  56. Murata M, Hasegawa K, Kanazawa I, Japan Zonisamide on PD Study Group (2007) Zonisamide improves motor function in Parkinson disease: a randomized, double-blind study. Neurology 68:45–50

    Article  CAS  PubMed  Google Scholar 

  57. Murata M, Horiuchi E, Kanazawa I (2001) Zonisamide has beneficial effects on Parkinson’s disease patients. Neurosci Res 41:397–399

    Article  CAS  PubMed  Google Scholar 

  58. Nakanishi H, Kita H, Kitai ST (1987) Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation. Brain Res 437(1):35–44

    Article  CAS  PubMed  Google Scholar 

  59. Nambu A (2005) A new approach to understand the pathophysiology of Parkinson’s disease. J Neurol 252(Suppl 4):IV1–IV4

    PubMed  Google Scholar 

  60. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43(2):111–117

    Article  PubMed  Google Scholar 

  61. Ni ZG, Bouali-Benazzouz R, Gao DM, Benabid AL, Benazzouz A (2001) Time-course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats. Brain Res 899:142–147

    Article  CAS  PubMed  Google Scholar 

  62. Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berlin) 191:521–550

    Article  CAS  Google Scholar 

  63. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19

    Article  CAS  PubMed  Google Scholar 

  64. Oommen KJ, Mathews S (1999) Zonisamide: a new antiepileptic drug. Clin Neuropharmacol 22:192–200

    CAS  PubMed  Google Scholar 

  65. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593

    Article  CAS  PubMed  Google Scholar 

  66. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  67. Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400(6745):677–682

    Article  CAS  PubMed  Google Scholar 

  68. Reck C, Florin E, Wojtecki L, Krause H, Groiss S, Voges J, Maarouf M, Sturm V, Schnitzler A, Timmermann L (2009) Characterisation of tremor-associated local field potentials in the subthalamic nucleus in Parkinson’s disease. Eur J Neurosci 29:599–612

    Google Scholar 

  69. Shimizu M, Uno H, Ito T, Masuda Y, Kurokawa M (1996) Research and development of zonisamide, a new type of antiepileptic drug. Yakugaku Zassi 116(7):533–547

    Google Scholar 

  70. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387

    Article  CAS  PubMed  Google Scholar 

  71. Steriade M, Jones EG, Llinas RR (1990) Thalamic oscillations and signalling. Wiley, New York

    Google Scholar 

  72. Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier Science, Oxford

    Google Scholar 

  73. Su PC, Tseng HM, Liu HM, Yen RF, Liou HH (2002) Subthalamotomy for advanced Parkinson disease. J Neurosurg 97:598–606

    Article  PubMed  Google Scholar 

  74. Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Miyamoto K, Seino M (1992) Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res 12(1):21–27

    Article  CAS  PubMed  Google Scholar 

  75. Tai C-H, Pan M-K, Lin J-J, Huang C-S, Yang Y-C, Kuo C-C (2012) Subthalamic discharges as a causal determinant of parkinsonian motor deficits. Ann Neurol 72(3):464–476

    Article  PubMed  Google Scholar 

  76. Tai C-H, Yang Y-C, Pan M-K, Huang C-S, Kuo C-C (2011) Modulation of subthalamic T-type Ca2+ channels remedies locomotor deficits in a rat model of Parkinson disease. J Clin Invest 121(8):3289–3305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126:199–212

    Article  PubMed  Google Scholar 

  78. Tseng HM, Su PC, Liu HM, Liou HH, Yen RF (2007) Bilateral subthalamotomy for advanced Parkinson disease. Surg Neurol S1:43–51

    Article  Google Scholar 

  79. Vila M, Périer C, Féger J, Yelnik J, Faucheux B, Ruberg M, Raisman-Vozari R, Agid Y, Hirsch EC (2000) Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur J Neurosci 12:337–344

    Google Scholar 

  80. Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, Ribary U, Llinás R (1996) Central motor loop oscillations in parkinsonian resting tremor revealed by magnetoencephalography. Neurology 46:1359–1370

    Google Scholar 

  81. Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72(2):494–506

    CAS  PubMed  Google Scholar 

  82. Wilensky AJ, Friel PN, Ojemann LM, Dodrill CB, McCormick KB, Levy RH (1985) Zonisamide in epilepsy: a pilot study. Epilepsia 26:212–220

    Article  CAS  PubMed  Google Scholar 

  83. Yagi K, Seino M (1992) Methodological requirements for clinical trials in refractory epilepsies—–our experience with zonisamide. Prog Neuropsychopharmacol Biol Psychiatry 16:79–85

    Article  CAS  PubMed  Google Scholar 

  84. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chen-Syuan Huang for the technical assistance. Our work in this field was supported by the National Science Council, Taiwan (grants NSC99-2311-B-182-001-MY3 and NSC102-2311-B-182-003 to Y.-C. Y., NSC 101-2314-B-002-133-MY3 to C.-H. T., and NSC100-2320-B-002-009-MY3 and NSC102-2321-B-002-058 to C.-C. K.) and by the Chang Gung Hospital, Taiwan (grants CMRPD3B0021-3 to Y.-C. Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Chin Kuo.

Additional information

This article is published as part of the special issue on [T-type (Cav3) calcium channels in health and disease]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YC., Tai, CH., Pan, MK. et al. The T-type calcium channel as a new therapeutic target for Parkinson’s disease. Pflugers Arch - Eur J Physiol 466, 747–755 (2014). https://doi.org/10.1007/s00424-014-1466-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1466-6

Keywords

Navigation