Skip to main content
Log in

Cardiac myosin binding protein-C: a novel sarcomeric target for gene therapy

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Through its ability to interact with both the thick and thin filament proteins within the sarcomere, cardiac myosin binding protein-C (cMyBP-C) regulates the contractile properties of the myocardium. The central regulatory role of cMyBP-C in heart function is emphasized by the fact that a large proportion of inherited hypertrophic cardiomyopathy cases in humans are caused by mutations in cMyBP-C. The primary dysfunction in cMyBP-C-related cardiomyopathies is likely to be abnormal myofilament contractile function; however, currently, there are no effective therapies for ameliorating these contractile defects. Thus, there is a compelling need to design novel therapies to restore normal contractile function in cMyBP-C-related cardiomyopathies. To this end, concepts gleaned from various structural, functional, and biochemical studies can now be utilized to engineer cMyBP-C proteins that, when incorporated into the sarcomere, can significantly improve contractile function. In this review, we discuss the rationale for cMyBP-C-based gene therapies that can be utilized to treat contractile dysfunction in inherited and acquired cardiomyopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carrier L, Schlossarek S, Willis MS, Eschenhagen T (2010) The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res 85:330–338

    Article  CAS  PubMed  Google Scholar 

  2. Chatterjee K, Massie B (2007) Systolic and diastolic heart failure: differences and similarities. J Card Fail 13:569–576

    Article  PubMed  Google Scholar 

  3. Chen PP, Patel JR, Powers PA, Fitzsimons DP, Moss RL (2012) Dissociation of structural and functional phenotypes in cardiac myosin-binding protein C conditional knockout mice. Circulation 126:1194–1205

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cheng Y, Wan X, McElfresh TA, Chen X, Gresham KS, Rosenbaum DS, Chandler MP, Stelzer JE (2013) Impaired contractile function due to decreased cardiac myosin binding protein C content in the sarcomere. Am J Physiol Heart Circ Physiol 305:H52–H65

    Article  CAS  PubMed  Google Scholar 

  5. Copeland O, Sadayappan S, Messer AE, Steinen GJ, van der Velden J, Marston SB (2010) Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle. J Mol Cell Cardiol 49:1003–1011

    Article  CAS  PubMed  Google Scholar 

  6. Coulton AT, Stelzer JE (2012) Cardiac myosin binding protein C and its phosphorylation regulate multiple steps in the cross-bridge cycle of muscle contraction. Biochemistry 51:3292–3301

    Article  CAS  PubMed  Google Scholar 

  7. Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM (2008) Designing heart performance by gene transfer. Physiol Rev 88:1567–1651

    Article  CAS  PubMed  Google Scholar 

  8. Day SM, Westfall MV, Fomicheva EV, Hoyer K, Yasuda S, La Cross NC, D’Alecy LG, Ingwall JS, Metzger JM (2006) Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat Med 12:181–189

    Article  CAS  PubMed  Google Scholar 

  9. De Lange WJ, Grimes AC, Hegge LF, Spring AM, Brost TM, Ralphe JC (2013) E258K HCM-causing mutation in cardiac MyBP-C reduces contractile force and accelerates twitch kinetics by disrupting the cMyBP-C and myosin S2 interaction. J Gen Physiol 142:241–255

    Article  PubMed  Google Scholar 

  10. Desjardins CL, Chen Y, Coulton AT, Hoit BD, Yu X, Stelzer JE (2012) Cardiac myosin binding protein C insufficiency leads to early onset of mechanical dysfunction. Circ Cardiovasc Imaging 5:127–136

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gupta MK, Gulick J, James J, Osinska H, Lorenz JN, Robbins J (2013) Functional dissection of myosin binding protein C phosphorylation. J Mol Cell Cardiol 64:39–50

    Article  CAS  PubMed  Google Scholar 

  12. Hajjar RJ (2013) Potential of gene therapy as a treatment for heart failure. J Clin Invest 123:53–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA, Moss RL (2002) Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res 90:594–601

    Article  CAS  PubMed  Google Scholar 

  14. Harris SP, Lyons RG, Bezold KL (2011) In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ Res 108:751–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hasenfuss G, Teerlink JR (2011) Cardiac inotropes: current agents and future directions. Eur Heart J 32:1838–1845

    Article  CAS  PubMed  Google Scholar 

  16. Herron TJ, Devaney E, Mundada L, Arden E, Day S, Guerrero-Serna G, Turner I, Westfall M, Metzger JM (2010) Ca2+-independent positive molecular inotropy for failing rabbit and human cardiac muscle by alpha-myosin motor gene transfer. FASEB J 24:415–424

    Article  CAS  PubMed  Google Scholar 

  17. Kuster DW, Bawazeer AC, Zaremba R, Goebel M, Boontje NM, van der Velden J (2012) Cardiac myosin binding protein C phosphorylation in cardiac disease. J Muscle Res Cell Motil 33:43–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Malik FI, Hartman JJ, Elias KA et al (2011) Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331:1439–1443

    Article  CAS  PubMed  Google Scholar 

  19. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92:785–789

    Article  CAS  PubMed  Google Scholar 

  20. Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ, Jalilzadeh S, Carballo S, Redwood C, Watkins H (2009) Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 105:219–222

    Article  CAS  PubMed  Google Scholar 

  21. Merkulov S, Chen X, Chandler MP, Stelzer JE (2012) In vivo cardiac myosin binding protein C gene transfer rescues myofilament contractile dysfunction in cardiac myosin binding protein C null mice. Circ Heart Fail 5:635–644

    Article  CAS  PubMed  Google Scholar 

  22. Morita H, Nagai R, Seidman JG, Seidman CE (2010) Sarcomere gene mutations in hypertrophy and heart failure. J Cardiovasc Transl Res 3:297–303

    PubMed Central  PubMed  Google Scholar 

  23. Nagayama T, Takimoto E, Sadayappan S, Mudd JO, Seidman JG, Robbins J, Kass DA (2007) Control of in vivo left ventricular [correction] contraction/relaxation kinetics by myosin binding protein C: protein kinase A phosphorylation dependent and independent regulation. Circulation 116:2399–2408

    Article  CAS  PubMed  Google Scholar 

  24. Olivotto I, Girolami F, Ackerman MJ, Nistri S, Bos JM, Zachara E, Ommen SR, Theis JL, Vaubel RA, Re F, Armentano C, Poggesi C, Torricelli F, Cecchi F (2008) Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc 83:630–638

    CAS  PubMed  Google Scholar 

  25. Page SP, Kounas S, Syrris P, Christiansen M, Frank-Hansen R, Andersen PS, Elliott PM, McKenna WJ (2012) Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long term outcome. Circ Cardiovasc Genet 5:156–166

    Article  CAS  PubMed  Google Scholar 

  26. Palmer BM, Sadayappan S, Wang Y, Weith AE, Previs MJ, Bekyarova T, Irving TC, Robbins J, Maughan DW (2011) Roles for cardiac MyBP-C in maintaining myofilament lattice rigidity and prolonging myosin cross-bridge lifetime. Biophys J 101:1661–1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Previs MJ, Beck Previs S, Gulick J, Robbins J, Warshaw DM (2012) Molecular mechanics of cardiac myosin-binding protein C in native thick filaments. Science 337:1215–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Roger VL, Go AS, Lloyd-Jones DM, American Heart Association Statistics C, Stroke Statistics S et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–e220

    Article  PubMed  Google Scholar 

  29. Sadayappan S, de Tombe PP (2012) Cardiac myosin binding protein-C: redefining its structure and function. Biophys Rev 4:93–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Shaffer JF, Kensler RW, Harris SP (2009) The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner. J Biol Chem 284:12318–12327

    Article  CAS  PubMed  Google Scholar 

  31. Teerlink JR (2009) A novel approach to improve cardiac performance: cardiac myosin activators. Heart Fail Rev 14:289–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Teerlink JR, Clarke CP, Saikali KG, Lee JH, Chen MM, Escandon RD, Elliott L, Bee R, Habibzadeh MR, Goldman JH, Schiller NB, Malik FI, Wolff AA (2011) Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet 378:667–675

    Article  CAS  PubMed  Google Scholar 

  33. van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119:1473–1483

    Article  PubMed  Google Scholar 

  34. Waldmuller S, Erdmann J, Binner P, German Competence Network Heart F et al (2011) Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure. Eur J Heart Fail 13:1185–1192

    Article  PubMed  Google Scholar 

  35. Xie M, Burchfield JS, Hill JA (2013) Pathological ventricular remodeling: therapies: part 2 of 2. Circulation 128:1021–1030

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (RO1HL114770) from the National Heart, Lung and Blood Institute.

Conflict of interest

Dr. Stelzer holds a provisional patent for cMyBP-C gene delivery for correction of contractile dysfunction in hypertrophic cardiomyopathy. The other authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian E. Stelzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamidi, R., Li, J., Gresham, K.S. et al. Cardiac myosin binding protein-C: a novel sarcomeric target for gene therapy. Pflugers Arch - Eur J Physiol 466, 225–230 (2014). https://doi.org/10.1007/s00424-013-1412-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1412-z

Keywords

Navigation